0Te FILE Copy

RADC-TR-90-182
Final Technical Report
August 1990

AD-A227 856

DECENTRALIZED REAL-TIME
SCHEDULING

Carnegie Mellon University:

J. Duane Northcutt, Raymond K. Clark, David P. Maynard, Jeffrey E. Trull

DTIC

ELECTE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

90 10 18 022

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable tc the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-182 has been reviewed and is approved for publication.

APPROVED: i (71ttt

THOMAS F. LAWRENCE
Project Engineer

/ 2
ora. aprd. /g A~

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

b

FOR THE COMMANDER: ,Ké?(

IGOR G. PLONISCH
Directorate of Plansg & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

fForm Approved

REPORT DOCUMENTATION PAGE OM8 No 07040188

3 PERIN T Ny OB RS0L e SUILS TG ITe I Me PGl rey P AN ITL TINS ST e 57 T3 3% Cures

Jm L reDIrtA I TLAdeN TCtS gy Toaet in M menrmmar Thog agr mgras Tl
H r~3ra r"‘arrnwr"’z;'“- 13ta e '-1 Uhals Rl aat+ I3 SN OIS Rt~ M40 ~ s cle InctiatTrraton Seng . —nmvﬂu (P3N IR S ELI3eN Astimate 2ran, Itrer nc,e 1211
SLesn A N ATIIMAL N fnLTr g suGiest Sy fr eg ,-v\; g purgen NAsRIrGIon Heagauariens Ser, ces Jieactarate iv n" ~37cn Qperatony ang Reoe f's 109 settersin
Tas et ady Sute T0T2 Lruegrln A ‘12 23302 argrztme Ytce S s 'a Agement 400 3LC et P3perans -Peow'. on Pec,er1(3704.3188). fasnrgton, TC <05C3
1. AGENCY USE ONLY (Ledve dlank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1990 Feb 89 to Feb 90
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-88-D-0026
DECENTRALIZED REAL-TIME E NG ’
CENTRALI REAL-TIME SCHEDULING Task B-9-3505
PE - 62702F
6. AUTHOR(S) PR - 5581
J. Duane Northcutt, Raymond K. Clark, TA - 21
David P. Maynard, Jeffrey E. Trull WU - PG
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Carnegie Mellon University

School of Computer Science N/A
Dept. of Electrical and Computer Engineering
Pittsburgh PA 15213

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING -
AGENCY REPORT NUMBER

Rome Air Development Center (COTD)
Griffiss AFB NY 13441-5700 RADC-TR-90-182

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Thomas F. Lawrence/COTD/(315) 330-2158

123. DISTRIBUTION. AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACY (Maximum 260 woras)

> This document describes experiments designed to evaluate the behavior and perform-
ance of various scheduling policies for the Alpha real-time distributed operating
system, (Northcutt 87): Alpha is an adaptable decentralized operating system being
developed as a part of the Archons project's on-going research into real-time

distributed systems. Timely completion of an application's computational activities
is one of the most inportant functions of a real-time system. Therefore, the proper

scheduling of those activities is of critical importance.

The Alpha programming model provides simple mechanisms for an application to specify

its timeliness requirements. The scheduler may consider this time constraint
information when scheduling activities for execution. To guage the effectiveness
of Alpha as an nperating system for real-time applications, an understanding of its
scheduling facility is necessary. To this end, a study of the effects of various
different scheduling policies was made. To evaluate these policies, a real-time

application was created to serve as an experimental workload. The application was ~|

13, SUB,ECT TERMS 15. NUMBER OF PAGES
Real-Time Scheduling Distributed Operating System 246
Distributed System Alpha 16 PRICE CODE
Decentralized Control Best-Ef fort Scheduler
17 SECURITY CLASS.FICATION J 18 SECURITY CLASSIFICATION [13 SECURITY CLASSIFICATION [20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

N5TET5A0 D 2E0 5500 50a0atd T SR Few 1o
B e I e

UNCLASSIFIED

designed to simplify the modeling of tasks with a wide range of timeliness

requirements and to provide = visual indication of scheduler performance.
e, . - S

Alpha provides a clean, well-defined interface between the scheduling sub-

system and the kernel proper. A general scheduler framework, independent

of any specific policy, has been implemented to simplify the development

and substitution of different policy modules.. This framecwork greatly simpli-

fies the experimental comparison of different policies. To date, eight

different scheduling policies have been implemented for Alpha. Five of these

policies are examined in this document - preemptive round-robin, static

priority, dynamic deadline, shortest processing time, and Best-Effort (Locke
86).

The experiments were designed to compare the application-level behavior of
various scheduling policies under a variety of loading conditions. Each
policy was judged based on criteria such as how well the application timeli-
ness requirements were met and what fraction of the potential value of the
application was obtained. The experimental results were then studied to
develop emphirical observations about the relative behavior of each scheduling
policy and to derive an understanding of the scheduling decisions that were
made.

Aocession For N ,_* (. \ i
NTIS GRARI g o
O

DTIC TAB

Unannounced
Justification

—

By
Distribution/
Avatlability Codes |
Avail and/or
Dist Special

A

UNCLASSTIFIED

Preface

The research discussed in this report investigates decentralized real-time scheduling in
the context of the Alpha Operating System. Four goals have been identified for this work:
(1) to identify areas where Alpha would benefit from additional decentralized real-time
scheduling research; (2) to define decentralized real-time scheduling algorithms for incorpo-
ration into Alpha; (3) to develop criteria to determine the efficacy of these algorithms; and
(4) to evaluate the algorithms.

A wwo-pronged approach has been adopted to satisfy these goals. On one front, Alpha
Release 1 is studied and evaluated. This effort identfies and evaluates the relevant real-
time scheduling facilities in Alpha, revealing open questions that require further research.
On the second front, research is performed that will improve Alpha in future releases. In
some cases, this work focuses on questions identified by the analysis of Alpha Release 1,
while in other cases it extends Alpha’s capabilities in directions previously identified—for
example, providing the foundation for the real-time transaction facility. In the future, the re-
sults of this research will be put into practice in Alpha.

This report is divided into three sections, one evaluating Alpha Release 1 and the others
reporting on new scheduling research.

Part A describes a demonstration program that was used to study various scheduling pol-
icies, including a Best-Effort Scheduler, in the context of Alpha Release 1. The program was
designed specifically to isolate scheduling policy decisions, to provide a graphic display of
scheduling algorithm behavior, and to measure scheduler performance. Each scheduling poli-
cy was analyzed under a variety of workloads, with Alpha’s Best-Effort Scheduler perform-
ing well. The results of this investigation are included in Part A.

Part B addresses the issue of scheduling distributed computations. It outlines ongoing
work to model decentralized and distributed computations, to describe best-effort scheduling
algorithms appropriate for this model, and to study the amount and type of information that is
required to schedule the computations effectively.

Part C extends best-effort techniques to schedule dependent activities in a supervisory
control real-time system. Dependent activities, which share common resour.es such as data
and devices, may also exchange signals to coordinate their actions. This study provides an
analytic framework to formally investigate various scheduling policies. Several useful proper-
ties of the resulting scheduling algorithm are proven within this framcwork. In addition, sim-
ulation results are presented that demonstrate the effectiveness o. the algorithm when com-
pared to other algorithms. (Part C is actually a draft of a doctoral dissertation. As such, it is
expected that it will be revised and augmented in order to produce the final version of the dis-
sertation.)

Note: This Final Technical Report and the Six-Month Technical Report (Interim Techni-

i

cal Report) together detail the research performed for this contract. While the material pre-
sented in Part C of this report updates and expands on Part A of the Interim Technical Re-
port; Part B of the Interim Technical Report, which described the completed analysis of the
Communication Subsystem of Alpha Release 1, is not repeated or revised in this document.

The Alpha Operating System:
Scheduler Evaluation Experiments

Jeffrey Trull
J. Duane Northcutt
David P. Maynard
Raymond K. Clark

School of Computer Science
Department of Elecrrical and Computer Engineering
Carnegie Mellon University

February 6, 1990

Table of Contents

Abstract............. cesessesssssassnssssnssaesasanssas teeesesusassatsssestssessssssssasessessesssssssnsssesassanes A-1
1. Introduction.........cceercernrisesnsersncnenes vereresessrissseessassessssensassssessasnssnses ..A-3
1.1 The Alpha Operating SyStem.......cccooiiiiciiiiiicci et A-3

1.1.1 Real-Time Scheduling Requirementsccccceriinievcnricninrcennencns A-4

1.1.2 Distribution ReqQUirements..............coevvvciiimieieniiiiicneccicnrvicceineni A-S

1.2 Testing Alpha Scheduling Policies ..o A-6

£.2.1 TeSt ObJECHIVES....coiiuieiiiiiiieiee ettt ettt et e s saeens A-6

1.2.2 Test Application REQUITEMENIS.oovviveiiiiiiienrctieree et ccnecnne A-7

2. Scheduler Evaluation System S R vt
2.1 Application Program STuctureococcoiiviiiiiiinciiccc e A-8

2.1.1 UNIX Implementationcccccveeiiiiininicieii e e eneens A-11

2.1.2 Alpha Implementationcccceeiiiiiieiie et ee e as A-11

2.2 External Environment Simulatorocceieeiiiiicieeniieiecsc e ncrnere et A-12

2.2.1 Simulator STUCTUIE ..ottt A-12

22,2 Operator INterfaceccocviierciniiniiiniciecicce e A-12

3. The Structure of an Alpha Scheduler cssesseesassnessnes vercsssnsensesesnes A-15
3.1 Scheduler/Kemel Interface ..o A-15

32 Structure of Generic Scheduler.. ... A-17

4. Scheduling Policies.....c.cccccereenrenrcrnseccnraansnnes —— cesssessnssssesessassanssns ..A-19
4.1 RoUNA RODIM ...ttt st s set e s e e e s a e e sraeens A-19

42 SHALC PLIOTITY oottt ettt s et e e e st e et esaesebeesaenasnesneens A-19

43 DEAAINEoeieiiire ettt et s eee st ae s s e arae e snane A-19

44 Shortest Processing TIme . ..ccouiiieveeeiiiireee ettt sreeeie e e s e seeresmeenneen A-20

45 Best EffOrt . et eeee s s A-20

5. Experimental Results........cceiiuncvrninnnrcssensnissecsseenssiceessancsssenns R A-21
5.1 Experimental Design.......cccociniiiiiiiiiiniiniic e A-21

5.1.1 Load Generation........ceccviiieieniin i et A-21

S.1.2. Evaluation MEtrICS ...ocvieeriviieiecececne et sae et s s A-21

5.2 Behavior ANAlySis........coveviiieniieeiiniieceeenie ettt s srnsscessraese A-22

5.3 SIMUIAtON RESUILS ...ovvveeeeeirieemisnciieriee et sese e ssnanas A-26

5.3.1 Thread Importance Sensitivityccccoveeureiiiiinciieiine et A-26

5.3.2 Meeting Application Time COnstraints..........ccccccerrvuervrirccresrennnn A-29

5.3.3 Maximizing Application Value.......cccccorvirvivniivinniiiiiiicceen A-30

6. CONCIUSIONS couceercerinersensterncrsscsersnsencsstssnsssissssasssssssasssssssssssessssasssssssassens A-34

REFETEIICES ueneeeeerrreneerereseensccessmssrecsesssssssessassssssasssosssrsssssssssssssassesssassanssssensassnssssss A-35

The Alpha Operanng System: Scheduler Evaluation Experiments A-l

Abstract

This document describes our experience with a set of experiments designed to evaluate
the behavior and performance of vanous scheduling policies for the Alpha real-time distribut-
ed operating system [Northcutt 87]. Alpha is an adaptable decentralized operating system
being developed as a part of the Archons projeci’s on-going research into real-time distribut-
ed systems. Timely completion of an application’s computational activities is one of the
most important functions of a real-time system. Therefore, the proper scheuu' ng of those ac-
tivities is of critical importance.

The Alpha programming model provides simple mechanisms for an application to specify
its timeliness requirements. 2 scheduler may consider this time constraint information
when scheduling activities for execution. To gauge the effectiveness of Alpha as an operat-
ing system for real-ume applications, an understanding of its scheduling facility is neces-
sary. To this end, a study of the effects of various different scheduling policies was made.
To evaluate these policies, a real-time application was created to serve as an experimental
workload. The application was designed to simplify the modeling of tasks with a wide range
of timeliness requirements and to provide a visual indication of scheduler performance.

Alpha provides a clean, well-defined interface between the scheduling subsystem and
the kernel proper. A general scheduler framework, independent of any specific policy, has
been implemented to simplify the development and substitution of different policy modules.
This framework greatly siumplifies the experimental comparison of different policies. To date,
eight different scheduling policies have been implemented for Alpha. Five of these policies
are examined in this document—preemptive round-robin, static priority, dynamic deadline,
shortest processing time, and Best-Effort [Locke 86].

The experiments were designed to compare the application-level behavior of various
scheduling policies under a vanety of loading conditions. Each policy was judged based on
criteria such as how well the application timeliness requirements were met and what fraction
of the potential value of the application was obtained. The experimental results were then
studied to develop empirical observations about the relative behavior of each scheduling poli-
cy and to derive an understanding of the scheduling decisions :hat were made.

The Alpha Operating System: Scheduler Evaluation Experiments A-3

1. Introduction

This document describes the experience of the Archons research project in evaluating a
set of scheduling policies for use in the Alpha distributed real-time operating system. Alpha
is unique among operating systems in the problem area it seeks to address: distmbuted, su-
pervisory-level, real-time command and control. This problem area dictates some special re-
quirements that the system must fulfill. These requirements are associated chiefly with the
need to manage resources in a timely and decentralized fashion. The Alpha programming
model permits the convenient expression of the timeliness requirements of an application.
The manner in which the active scheduling policy uses this information determines how well
the umeliness requirements are satisfied. This set of experiments examines the behavior
and performance of five different scheduling policies that have been implemented for Alpha.
Before examining these policies or the experiments in detail, however, it is useful to under-
stand the nature and requirements of Alpha.

1.1 The Alpha Operating System

The Alpha operating system is unique because of the requirements imposed by its appli-
cation domain. As a distributed real-time command and control system, Alpha is intended to
support applications where most of the activities in the system have stringent time con-
straints that are a matter of correctness rather than convenience—the safety of human life
and property may be dependent on the correct functioning of the system. In addition, the dis-
tributed nature of the system also places unusual demands on Alpha. Even though the sys-
tem consists of a collection of physically dispersed processing elements, system computation
resources must be managed so as to cooperatively perform a single mission, rather than
treated (as 1s currently common) as a network of communicating, but otherwise independent
and unrelated individual processing elements.

The Alpha programming model directly supports these needs [Northcutt 88b]. From the
viewpoint of the programmer, the physically dispersed system may be logically viewed as a
centralized one. The basic abstractions in Alpha include objects, threads, and operation invo-
cations. In Alpha, an object is defined as a logically related collection of data and the code
used to manipulate that data. The external interface to an object consists of the set of opera-
tions that may be performed on the object, and represents the only means of accessing the
object’s encapsulated data. The basic unit of activity in the Alpha system is known as a
threc 1, which is a representation of a logical point of program execution. Threads are the en-
tities which animate the otherwise passive objects in the system. Threads move between
objects by means of operation invocations. Operation invocations are similar in some ways
to procedure calls, accepting and returning parameters in much the same way.

In Alpha, there may be any number of threads executing within a single object. Further-
more, because objects may be on any physical processing element, threads may, as a result,
move between the processing nodes in the system. When a thread is created, it begins its
execution with the invocation of some operation on an object. The thread continues execu-

A4 The Alpha Operating System. Scheduler Evaluation Experiments

tion until this initial operation is complete, at which point it is deleted. In the process of exe-
cuting any operation, a thread may invoke operations on other objects. thereby transferring
the thread into a new object (which may be on a different node). If the target of an tnvo.ation
is on a different node, the thread state (including the current time constraints) is transferred
to the destination node.

It is important to recognize the difference between this programming model and that of
systems which support the process-message model. In the process model, a unit of computa-
tional activity is tightly bound to a piece of code and a physical processing element. When an
application is organized into objects which may be used by many system activities, it does
not make sense to confine points of control to specific code segments which belong exclusive-
ly to each thread. The thread abstraction in Alpha represents the essence of an abstract
computational activity, and is not burdened by unnecessary artifacts. A thread represents a
locus of program control and the current attributes the activity (e.g., its time constraints).
Threads move between objects without regard to their physical location, and do not incur
scheduling overhead as a result of each inter-object transition.

With respect to the real-time objectives of the system, the single most important re-
source that the Alpha system manages is the processing cycles available to the application.
Accordingly, processor scheduling has been a topic of great interest to the Archons project
for many years. The concept of rime-value functions has been developed to describe the time
constraints of activities in real-time systems. Time-value functions were originally devel-
oped by E. Douglas Jensen in the context of ballistic missile defense [Jensen 75]. The con-
cept was subsequently developed by the Archons Project students and staff at CMU, and
was incorporated in the Alpha operating system [Northcutt 88a].

As a result of the previous work in this area, it has become clear that the algorithms
needed to perform time-driven resource management are computationally demanding. In ad-
dition, 1 distributed real-time system must also be capable of dealing with the e»xceptions
and unexpected events that may occur as a result of the application environment. Because of
its great importance and demanding requirements, the Alpha scheduling subsystem has be-
come the center of great attention and much effort has been directed towards it in the course
of developing practical solutions to the problem of time-driven resource management. In Al-
pha, the scheduling subsystem has been carefully partitioned from the rest of the system and
a separate processing element is provided for it. Furthermore, the scheduling subsystem
was designed to allow the simple and straightforward substitution of different scheduling al-
gorithms, for the purpose of evaluation and comparison.

1.1.1 Real-Time Scheduling Requirements

In real-time systems, the timeliness of a computation is as much a part of correctness as
is calculating the correct value. Threats to human life and property are the expected results
of failure to meet either criteria. Most current approaches to meeting application time con-
straints involve the use of a sufficiently large amount of excess resources to ensure that the
timeliness needs are met. This viewpoint is evident in the common belief that a real-time
operating system is one that has fast context switching times and rapid interrupt handling.

The Alpha Operating System: Scheduler Evaluation Experiments A-S

Under this definition, any operating system running on a fast enough processor would be real-
time. What is really needed, however, are scheduling techniques that make the best possi-
ble use of processor cycles, both when there are enough resources to fully satisfy the activi-
ties in the system, and when there are not encugh cycles to meet all of an application time
constraints.

Some current approaches to resource management, spawned from the excess resources
school, involve the use of “guarantees™ about resource availability. This brand of manage-
ment can be the source of a great many problems, and is in itself antithetical to providing the
best use of the resources in a system. It is impossible to make any guarantees about re-
source availability unless the systern designer i1s willing to permit extremely urgent excep-
tion conditions to be ignored in favor of the less important ones which have been guaran'-~d
the resources needed. Adding more resources to the system merely postpoaes the inevita-
ble moment when even they will not be sufficient.

Responsiveness to time constraints should be based not on guarantees but on system
software that does the best possible job (according to some m-aningful application-level def-
1nition) at any given moment. This includes not only times when there are sufficient resourc-
es, but also imes when unexpected events occur and there are not enough resources to han-
dle every need of the application. Because many real-time systems are based on the belief
that 1s possible to make guaramees about resource availability, they do not even address be-
havior in overload. As a result, when overloads inevitably occur, they are handled poorly.
Oi.e form of good performance in overload is if t.» svstem’s performance degrades propor-
tionally to the amount of overload. Most existing systems experience complete failure when
overloads occur. If the system is designed to have so much computation power tha: this will
almost never happen, it could represent a serious waste of resources in the normal case. If,
on the other hand, the system is designed for lower performance and does not have sufficient
computational resources, system failure will occur. The optimum solution seems to be that
the systemn should have sufficient computational resources to perform the absolutely vital
system functions in the worst case. This way, the system does not fail in overload, but in-
stead postpones or does not perform the activities of lesser importance in favor of those that
are vital to successful mission completion.

1.1.2 Distribution Requirements

To be most effective, a mission-oriented distributed system must be strongly connected,
and must perform its activities as a whole in a cooperative (as opposed to competitive) fash-
ion. Alpha is the first distributed operating system to be truly decentralized. There is no
central entity whose failure would doom the system. The Alpha system provides support for
cooperation on a peer level which is implemented so that it can be logically viewed by the
programmer as having all the behavioral characteristics (in terms of synchronization and co-
herency) that a centralized system provides

The decentralized nature of Alpha has several important consequences with respect to
scheduling the application processors. The primary example involves time-constrained com-
putations that span multiple nodes. Proper handling of these distributed computations re-

A-6 The Alpha Operating System: Scheduler Evaluation Experiments

quires that the scheduling subsystem must be made aware of the time constraints associat-
ed with a thread when it arrives at a node. If, when a thread spans a series of nodes, a fail-
ure occurs in one of the nodes in the chain, the computation performed by that node is lost
and the computations based on its results are invalidated. Therefore, the head of the thread
must move back to the point prior to the first failure and Alpha must intelligendy schedule
cleanup activites for the orphaned threads. This includes removing tme constraints that
were acquired on or after the broken node.

1.2 Testing Alpha Scheduling Policies

The importance of the scheduling function in the Alpha system demands that the pelicies
used to allocate processing rcsources meet (as well as possible) the requirements of the ap-
plication. It is of course impossible to know in advance what charactenistics any given appli-
cation may requue of a schieduling policy. Centain charactenistics have, in the project’s expe-
nience, proven to be especially helpful in real-ime command and control applications. Using
these characteristics as a starting point, requirements for an application to run on the Alpha
system to exercise each scheduling policy on each of these points were devised.

1.2.1 Test Objectives

The scheduling policies examined in this report vary widely in such characteristics as the
amount and kind of information required. the computation time used in determining a sched-
ule, and the criteria used to rank competing threads into a schedule. A number of aspects of
each scheduling policy’s behavior are of interest in this effort. The primary intent of this
work was to evaluate the relative abilities of various scheduling policies when given a cer-
tain amount of information by the application. Also of interest is the examination and charac-
terization of the behavior of each scheduling policy within the context of Alpha.

The poucies tested here were evaluated under both underload and overload conditions.
Because the policies each use a subset of the available time constraint information and be-
cause each policy makes a different use of this information, the behavior of an application can
vary greatly from policy to policy and between underload and overload. It was of particular
interest to discover how well the overload performance of the scheduling policies provided for
graceful degradadion of svstem function. In general. if a system is not overloaded, a schedul-
er should be able to create a schedule that permits all the activities in the system to com-
plete before their critical times (the time at which completion of the activity would no longer
result in any value to the system). On the other hand, there are scheduling policies that do
not make use of al of the application-specified information that is available to the scheduling
subsvstem in Alpha, and cannot attain even this level of performance. O:her policies make
use of the full information available in the time-value functions, but use different critena to
determine schedules. The characterization of the resultant application-level behavior was of
great interest in these experiments.

Also examined was the response of various scheduling policies to particular scenarios
representing specific resource management problems. Furthermore, the sensitivity of sched-
uling policies to variations in their input parameters was also of interest, and experiments

The Alpha Operating Svstem: Scheduler Evaluation Experiments A-7

were carried out to determine the extent o which the values of various parameters affect the
schedules generated by each policy. These experiments provide clues about how the sched-
uling policies respond to small variations in constraints and how each policy makes trade-
offs when faced with difficult resource management decisions.

It was also intended that the results of this effort would include additional information
about the effectiveness of Alpha’s design and performance. One item of particular interest is
the effectiveness of the separation of policy from mechanism within the scheduling sub-
system. Alpha was designed with a scheduling framework into which a wide range of user-
specified scheduling policies can be inserted. This process of providing a collection of mecha-
nisms and not mandating a specific policy 1s a characteristic of Alpha operating system as a
whole.

An important objective of this work is the evaluation of scheduling policies to find ones
which exhibit the desired behavior with respect to handling time constraints imposed by ape-
riodic events. It was hoped that the empirical examination of the behavior of different sched-
uling policies would suggest what which class of policies performs the best under conditions
representative of real-time command and control applications.

1.2.2 Test Application Requirements

In order to meet these objectives, it was necessary to come up with a sample application
which both contained the elements of a supervisory real-time control application and could il-
lustrate in clear terms the efficacy of each scheduling policy with regards to its ability to suc-
cessfully meet the given time constraints. The application must be one where it 1s possible
to separate the effects of the scheduling policy from the other functions which affect the be-
havior of the application. To meet these two objectives, the application must contain certain
elements. First of all, the sample application must contain hard time constraints—i.e. there
must exist activities which demand response within a specific amount of time. If the applica-
tion responds to a time-critical event after that time, the response will be of no benefit to the
system. In most real-time systems, there are such activities which simply must be complet-
ed before a certain time has elapsed. However, there also exist applications where the pen-
alty for not meeting a time constraint may not be the loss of the system, and in fact may not
be very severe at all. Such activities are known as soft time constraints.

Another important feature required of the test application was the presence of multiple
schedulable entities. It is necessary for the scheduler to have a reasonably large number of
tasks contending for processor cycles. Having multiple concurrent activites helps ensure
that the scheduler must constantly make scheduling decisions, and that th: effects of those
decisions will be visible at the application level. A small number of activities might reduce
the demands on the system to a point where there was no longer any need for the scheduler
to be intelligent about allocating processor cycles. Having multiple activities that each per-
form a similar function but with different time constraints would make it easier to see the im-
pact of the time constraints clearly.

A-8 The Alpha Operaung Svstem. Scheduler Evaluation Experiments

2. Scheduler Evaluation System

After considerable thought, an application was devised which meets most of the criteria
expressed in the previous chapter. The abstract problem chosen for these experiments is the
task of keeping several bouncing balls in the air by means of moving motorized paddles.
Each ball has a paddle assigned to catch it. The application program that executes on Alpha
1s responsible for controlling the motion of the paddles to ensure that balls are not dropped.
The application program receives sensor data giving the position and velocity of the balls,
and produces a series of actuator commands to move the paddles into position.

The experimental environment is composed of two major components—the mechanical
subsystem that includes the physical environment in which the control activity exists (i.e.,
the balls, paddles, walls, ceiling, floor, gravity, etc.), and the control subsvstem that includes
the application program that performs the control functions, the Alpha operating system, and
the Alpha testbed on which 1t all runs. Figure 1 illustrates the mojor components of the ex-
perimental environment.

In the work descnibed here, the mechanical subsystem consists of an accurate simulation
of the mechanics of the bouncing balls and movable paddles. The system’s sensors and actu-
ators are also simulated. In addition to greatly simplifying the <ystern, simulation of the me-
chanical subsystem permits the rapid and accurate gathe _ of data, and permits the
straightforward manipulation of interesting experimental variables.

There are a number of software components which comprise the experimental environ-
ment. First is the Alpha application program which meets the given problem definition—i.e.,
the program must attemnpt to keep balls airborme by moving their associated paddles (the Al-
pha scheduling policy under test is responsible for scheduling the threads involved in this ac-
tivity). Secondly, there is the simulator which replaces the mechanical subsystem—i.e., the
devices that the program is designed to control and the physical environment in which they
exist. Finally, there is a human experimenter to manage the experiments (e.g., start and
stop simulation runs, alter simulation parameters, etc.).

2.1 Application Program Structure

The activities which comprise the application program have a variety of timeliness re-
quirements. The selection and ordering of the activities executed is controlled by the Alpha
scheduler. This causes the effectiveness of the application program to depend entirely on the
quality of the decisions made by the scheduler in Alpha. Because each of the paddles in the
application is assigned to a single ball, there is a separate system activity (i.e., thread) as-
signed to control the movement of each paddle. Therefore, when a paddle moves, the observ-
er can know that the system activity responsible for the movement of that paricular paddle
has heen scheduled and run.

The time constraints associated with threads are distinguished from each other in three
ways. The first way is through deadline information about the current task (in this applica-

The Alpha Operating Svsiem: Scheduler Evaluation Experiments A-9

Mechanical Subsvstem

fou - s
. N
i
.. |
* Sensor Data Vm Actuator Commands
T ol bl o

A IR A IR I

Control Subsystem

Figure 1: Experimental Environment

tion, the time until the assigned ball falls to the level of the paddle). The second way that
time-critical activities are described is by their expected computation time. This estimate is
the amount of processing resources expected to be required by a thread in order to meet a
time constraint. Finally, there is an integer value that can be assigned by the experimenter
to each thread. This value becomes a characteristic known as the importance of the thread.
In these experiments it corresponds to the importance of the ball that the thread is attempt-
ing to keep aloft. These three characteristics of each paddle movement activity (i.e., thread
time constraint) are provided by the application program to the Alpha scheduler. This time
constraint information is provided so that thread execution schedules can be created based
on the time a ball will take to fall to the floor, the time it will take to move its paddle to the
ball intercept point, and the value of the ball to be caught. All three of these characteristics
may be observed and controlled by the experimenter, so both the basis of the scheduler’s de-
cisions and the effects of the decisions themselves (i.e., the sequence of paddle movements)
are directly visible.

A-10 The Alpha Operating Svstem. Scheduler Evaluation Experiments

The simplicity of the application limits the amount of application-level interference that
could mask the effects of scheduling decisions. A single piece of application code can de-
scribe the correct operation every paddle activity in the system. It is only necessary to de-
scnibe how, for a single paddle, to use the sensor information on the location of the ball to
compute and execute a sequence of paddle movements that will place it in position to inter-
cept the falling ball. The only difference between paddle control activities is the critical time,
expected computation time, and importance information associated with each thread. The de-
cisions about which balls to (attempt to) catch, and in what order, are as a result made en-
tirely by the Alpha scheduler.

The simulator’s interface to the application is provided through the Sun-UNIX remote
procedure call mechanism. The simulator communicates with the application paddle manage-
ment system to ensure that the tasks which move the paddles are running when the simula-
tion is started, and to remove them wnen the simulation is stopped or the user removes the
corresponding ball. To remove or add a paddle, the operator interface simply calls the corre-
sponding remote procedure. These remote procedure calls are translated into Alpha invoca-
tions by the Alpha external communications interface. Requests for simulator operations -
gin as invocations from the application and armve at the simulator as remote procedure calls.
The translauons between each of these systems is provided by interfacing software. Thus
an invocation of a simulator interface operation eventually is performed as a remote proce-
dure call on the Sun-UNIX system, and a remote procedure call of a paddle management rou-

tine becomes an invocation on an Alpha testbed node.

There are two major operations which tasks in the application can request from the simu-
lator. These operations are GetSensor, which retumns information concerning the current po-
siton and velocity of a given ball, and MovePaddie, which allows the application to move a
paddle one increment to the left or nght. MovePaddle requires a fixed amount of node compu-
tation time to run, as would be expected from an operation that required the continuous puls-
ing of a stepper motor. GetSensor requires some tume for the data 1o wmve, o it involves
blocking and waiting for the packet to arnve. Both operations were Jdestgned to miodel a
physical system. There are also rwo major operations that the simuelaor can request the ap-
plication to perform. These operations are AddPaddie and RemovePaddie. The appicanon
has a paddle manager which implements the paddle control operaiion ~ that the simulator o
invoke. The paddle manager allows the evaluanon envirorment pachone to rrmoiciy create
and delete threads that implement individual paddles.

The implementation of the paddle manager depends on the task management faciines
available on the application system, as does the implementation of anv auxihiary modules
used to communicate with the evaluation environment’s system. The design ot the paddle
tasks. however, 1s fairly straightforward and is mostly independent of the system on which
they run. Each paddle task must query the position and velocity of 1ts target ball, must caleu-
late the predicted landing location, and must move the paddle to that location. Once the ball
bounces or is dropped, the process is repeated. An important fact to realize is that the cyclic
nature of this task does not make the application a perindic process in the sense of having
predictable time constraints. The timeliness and processing requirements of the paddle tasks

The Alpha Operanng System. Scheduler Evaluation Experimenis A-11

may be different each time they repeat the sense-move loop. As in most supervisory real-
time problems, the workload cannot be predicted in advance.

Two implementations of the application were developed. These were on a Sun UNIX
system and the Alpha Release 1 testbed. The UNIX version was implemented to simplify
tesung the application interface to the simulator. The Alpha system was the object of the ac-
tual experiments.

2.1.1 UNIX Implementation

The structure of the UNIX implementation is a direct translation of the English descrip-
tion given above. The paddle tasks., which are implemented with UNIX processes, use the
remote procedure call mechanism to access the simulator GetSensor and MovePaddle opera-
tions. Each paddle process calls GetSensor to obtain the position and velocity of the ball as
well as the distance it can move in each paddle movement increment and the time each move
takes. It then computes the distance that it must move to catch the ball at the intercept
point, converts to the number of movement increments that it will require, and calls Move-
Paddle that many times, waiting the appropriate delay between each move. If the paddle ar-
rives early, it uses the UNIX interval timer facility to block until the intercept occurs.

T.ere were several unfortunate characteristics of this UNIX-based implementation.
Probably the major problem was that UNIX, not being a real-time system. had no facilities
for describing the time constraints of a task. Each paddle task had a time constraint which
was the time required for a ball to fall to the level of the paddle, after which there was no use
In continuing to move to the intercept point. There was no way to describe this time con-
straint to the system, and there was no way to tell the system that such an movement at-
tempt should be aborted after it had already failed. It was possible to use the interval timer
facility and a vanety of complicated tests to generate the desired behavior. However, there
was no general, natural way of describing the characteristics of the paddle tasks and having
them considered as part of the scheduling process.

2.1.2 Alpha Implementation

Because there are general mechanisms for describing time constraints in the Alpha sys-
tem, it was straightforward to implement the paddle tasks in a way that permitted them to
describe their time constraints to the scheduling subsystem. The structure of the paddle
task remains much the same from the UNIX version. However, the paddle task now used
the information acquired from the GetSensor call to determine the time required to move the
paddie to the intercept point. The importance of the task for the purposes of the scheduler is
given by the value of the ball scaled by a constant. The value function is given by a constant
which drops to zero at the time that the ball will pass the level of the paddle. Such a ume
constraint forms what is called a hard deadline.

Depending on the scheduling policy used, some or all of this time constraint information
may be utilized to determine a good schedule. Under policies that support dynamic dead-
lines, the tasks can be automatically aborted out of their deadlines once the deadline has

A-12 The Alpha Operating Svstem. Scheauler Evaluation Experiments

passed (this eliminated the elaborate checking to determine if the ball has passed vet). As
soon as the ball is dropped. the deadline is aborted.

2.2 External Environment Simulator

The external environment simulator serves as a surrogate for the real-world sensors and
actuators compnsing the external environment of a supervisory control system. [t provides
functions to read the sensors and move the actuators, and keeps track of the changes in the
simulated environment. A graphical operator interface allows the user to control the simula-
tion. These two modules together allow the experimenter to manipulate the situation the
workload and record the results.

2.2.1 Simulator Structure

The simulator models the motion of the balls and the paddles and provides sensor infor-
mation about the current state of both. The interface berween the evaluation environment
and the application was designed so that the application cculd be placed into a real. physical
situation identical to that which was being simulated. and no change to the application would
be necessary. In addition to modeling the motion ot the balls. the simulator accepts requests
from the application that cause the paddles to move. It also accepts commands from the op-
erator interface that allow the user to start and stop the simulation, create or modify balls,
and extract performance information as the application 1s running. Other actions performed
by the simulator include notifying the application when a ball has been dropped.

The simulator performs most of its work during the simulation update period. This occurs
once every ume period, and involves updating the positions and velocities of all the presendy
exisung balls, as well as checking for collisions and performing bounce calculations. These
computations are performed by modeling elastic collisions with the walls and paddles. To
better simulate the kinds of apeniodic loads which actual supervisory real-time svstems ex-
perience, the bounce direction from a collision with the paddle is selected randomly. If during
the process of updating the simulator state, it 1s discovered that any balls have been
dropped, the application is notified and directed to remove the associated paddle. However,
to enable the user to sustain a constant load on the system, it is possible. using the operator
intertace, to select certain balls that will remain in the sumulation when dropped and will
bounce back up above the paddle instead of being removed from the simulation. The output
of the simulator includes timestamped messages indicating when balls are caught or
dropped, and what the value of each ball i1s. With this information it i1s possible to compute a
wide vaety of useful statistics about the performance of the system.

2.2.2 Operator Interface

The operator interface provides the experimenter with control over the simulation. It dis-
plays a wiindow that contwins a small control panel for managing the simulaton and a larger
subwindow that shows the current simulation state (see Figure 2). There are buttons on the
control paiel that permit the user to stop and start the simulation. When in the stopped
state, no paddle tasks are running on the Alpha system and the user may add or remove

The Alpha Operating System. Scheduler Evalugrion Experiments A-13

Sctwdu | ing Deno Versien 8.5

) T - |
) . |
“ ;j_; Cipac) ((ene ra) (Cove “aarcact) P e ave) rtar+) i
. ‘
I o i Tays (R wath (Coud Snepm t) [T !
e el
i
J—
| rvam
i
o |
|
[
"
Framp
Mahker 1
(.7’ 2
av
e)
e -
i
i
R }
1
. 4 —_—
3—/)* - o) . i

Figure 2: User Interface

balls and paddles without difficulty. Balls are added or removed by using two buttons re-
served for that purpose. The operator selects locations bv “clicking” the mouse button in
the display area to indicate the ball or the position desired. Adding or removing a ball will re-
sult in the addition or removal of a corresponding paddle. In the stopped state, however, no
paddles are shown; the paddles first appear when the simulation is started. There are also
facilities for capturing and replaying sequences of action that appear in the display window,
as well as for saving and restoring initial ball placements. Selecting a ball displays a panel
that allows the user to alter its velocity, height, value, and paddle position.

When the user “clicks” the start button, the simulation begins and the balls start moving
according to their given initial conditions. Once the simulation is started the paddles start
moving o catchr the balls. The user may alter the distance a paddle travels with a single
pulse of the stepper motor, the paddle speed, and how much compute time each pulse takes,
the movement delay. With these two controls, it is possible to change the amount of load
present on the system. For example, increasing paddle speed decreases the number of com-
putations required. Increasing the motion delay increases the computation time required.

A-14 The Alpha Operating System. Scheduler Evaluanon Experiments

This ability to adjust the positions and velocities of the balls and paddles greatly simplifies
the task of experimenting with a variety of loading conditions.

The Alpha Operating Svstem. Scheduler Evaluanon Experiments A-15

3. The Structure of an Alpha Scheduler

The scheduling function in Release 1 of Alpha is managed by an independent subsystem
that executes on a separate processor. A formalized interface defines the messages passed
between the Alpha kernel and the scheduler. To simplify the development of scheduling poli-
cies, a general framework for implementing policies has been defined. The framework han-
dles the actual message generation and processing. leaving the individual policy to decide
how to respond to various messages.

The scheduler framework dispatches each kind of message from the application processor
to a policy-supplied handler. Examples of these messages include messages that indicate
that a task should be added to or removed, messages that define how the time constraints of
the currentdy running task have changed, and others which suppon the distributed nature of
Alpha, including cleanup for certain aborted operations. Each scheduling policy may choose
how to respond to these messages and how to utilize the information provided therein. All
eight schedulers which were implemented within this framework required only subsets of the
information provided by these messages, and none needed any structure which was not easi-
ly created within this framework.

3.1 Scheduler/Kernel Interface

The function of a scheduler in the Alpha system is to determine which of the currenty
ready threads to run. To make this decision, the scheduler may use the time constraint infor-
mation provided to the scheduler by the application. This information consists of three parts:
a nme-value function, indicating the time-varying value of completing a task at a given time,
an expected computation time, the cycle time required to complete the task, and an impor-
tance, a value used to scale the value function. A scheduling policy must handle changes in
these thread-provided parameters and, if necessary, correctly reevaluate the currently active
schedule.

In Release 1 of Alpha, the scheduling subsystem executes on a separate processor from
the application (and most of the Alpha kernel). The scheduling framework implements a
queued, message-based communicauon channel between the processors. Messages are
transmitted 1n two parts. There is a command part, which indicates the command to be per-
formed, and a body which gives parameters to the command. The commands are:

» Add: used to tell the scheduler of the presence of a thread which is newly available
for scheduling. This can occur when a new thread is created. when a blocked thread
is unblocked, or when a thread from another node starts running on the node. This
last vanant is referred as a “surrogate add” because the structures representing
the thread on this node are acting as surrogates for the thread structure on the node
where 1t was created. There is also a version known as a delaved add; this pro-
vides a time delayed Add command and is utilized in implementing the kemnel Sleep
operauon. The parameters describing the function include a unique identifier for the
scheduler to refer to in communications with the application processor. If the Add is
a surrogate add, i.e. if the thread was created on another node and its point of con-

The Alpha Operating System: Scheduler Evaluation Experiments

ol has just armived on this node. the parameters include information about the time
constraints it accumulated prior to arrival on this node.

Remove: indicates that the current thread has voluntarily given up the processor.
This usually occurs when the thread which is currently running has blocked awaiting
some activity. Another version called Kil is used when the cumrently running thread
has permanently given up the processor. This occurs when a thread retrums from
the invocation it started in, and when a thread that originated on another processor
completely finishes its work on the node.

Change: This command amrives whea the currently running thread has altered its
time constraints in some way. There are three ways in which this can occur. First,
the thread may enter a new deadline. This 1s referred as pushing time constraints,
because deadlines may be nested. Second, the thread may exit a deadline. For
similar reasons, this is referred to as popping time constraints. Finally, the thread
can change its importance.

Access Scheduling Information: There are four commands of this type. They all
relate to conditions when the time constraints must be accessed or altered outside
of the normal stacking methods. The dump subcommand is used to gather a
thread's time constraints in preparation for a remote invocation. The update com-
mand 1s used to update time constraint information such as total computation time
after the thread has been executing on a remote node. There are two commands
that deal with abort conditions that permit the correct time constraints for abort pro-
cessing to be determined. These are the Get and Set Abort Scheduling Information
commands. If a deadline aborts, the Get command is used to determine the correct
time constraints to operate the abort cleanup code with. The Set command is used
to force the time constraints of a specific thread into those which are required for its
abort processing.

Preemption Confirmation: This is a necessary element of the communication be-
tween scheduler and kernel. It is sent after a request to replace the currently run-
ning thread with another has been successfully processed. This allows the schedul-
er to update the amount of time a thread has run. There are two variations of this
command, one of which indicates that the currently running thread was preempted
successfully, and one which indicates that the processor was idle when the preemp-
tion was requested. This message is necessary to provide the scheduler with a
consistent picture of what is happening on the application processor.

Statistics Control: There are two of these commands, that tum on and off optional
statistics gathering, if the current scheduling policy supports logging.

There are only a few circumstances in which the scheduler must initiate communications
with the kemel. Several of these instances occur as part of handshaking involved with the
scheduler commands. Two, however, are of fundamental importance to the operation of the

system.

The Preempt command, which has been previously discussed, is used to tell the

kernel to run a specific thread. The Abort command is used when the scheduler determines
that a thread's cntical ume has passed. It initiates abort processing for the missed dead-
line. This command is, of course, only of interest for policies that support deadlines.

The Alpha Operaung Svstem: Scheduler Evaluunion Experiments A-17

/

Foreground

< | Dispatcher

Policy Foreground Routines

/
Command 4: Foreground Inpuz\

Intermupt §—>
Dispatcher

Queue

~_ /

Timed Event Queue
Policy Interrupt Handlers

Figure 3: Basic Scheduler Structure

3.2 Structure of Generic Scheduler

Each of the scheduler commands described in the previous section must be implemented
by every scheduling policy. The policy routines which implement these commands are auto-
matically called when the commands are received. It is possible to supply a null function if
the command is to be ignored by the policy, or an error function if the command should never
be received by the policy.

Each policy must supply two types of command handlers. The first kind 1s called when
the command is received under interrupt, and allows rapid handling of messages as well as
general interrupt-level processing. In addition, the scheduler framework supplies an internal
message queue which may be used to queue commands up for foreground processing (see
Figure 3). The framework calls foreground procedures corresponding to the commands in the
queue as they emerge. Any part of the handling for a command may be performed either un-
der interrupt or in the foreground. If all the commands are to be handled in the foreground,

then the interrupt tasks would simply enqueue the incoming commands into the foreground
queue.

The minimum requirements for a scheduler in the Alpha system are fairly simple. The
scheduler must remember the set of ready threads, and if the set i1s non-empty, make sure
that there is always something running on the application processor. The scheduler frame-
work provides a queue package which aids in the manipulation of schedules.

A-18 The Alpha Operating System. Scheduler Evaluanon Experiments

Scheduling policies that are more sophisticated, generally share some common character-
istics. First, the schedulers generally construct a list describing the order in which threads
should run. When a thread is added to the ready list or the ume constraints of a thread are
changed, some computation is required to determine whether or not to reorder the list. The
operation of other commands, if any, depend on how the policy utlized the scheduling param-
eters provided by the threads.

The Alpha Operating Svstem: Scheduler Svaluation Experiments A-19

4. Scheduling Policies

Five of the eight policies implemented for use in the Alpha :ystem were selected for eval-
uation in these experiments. The following sections briefly describe the operation of each of
these policies.

4.1 Round Robin

The Round Robin policy is the fairest of all the schedulers. It treats all threads in the
system equally, giving each eligible thread the same fraction of the processor time.

The implementation of the Round Robin policy is straightforward. Every 100ms a timer
event is inserted into the queue by the policy timer interrupt routine. Upon receipt of a timer
event, the foreground command processor calls the timer routine, which removes the element
at the head of the queue and inserts 1 a* the end. If the new head is different from the old
head, the application processor is preemp.:d with the new head of the queue. Add and Re-
move commands are handled in the simplest possible way. If the command is an Add. the
new thread is added at the end of the ready queue. If the command is a Remove, the thread
is removed from the ready queue, and the applicauon processor is preempted with the new
head of the queue. Under Round Robin, time constraints are ignored, as are the miscella-
neous commands associated with accessing scheduling information.

4.2 Static Priority

Static Priority scheduling is the simplest method of dealing with scheduling parameter dif-
ferences between the threads available to run. Each thread is assigned a pnonty which 1s
equal to the importance part of its time constraint. The scheduler always selects the thread
with the highest priority, or one of them, if there are several with the same importance to
run. The time-criticality of the thread not taken into account.

The implementation of Static Priority recuires no timer usage. The scheduler frame-
work’s queue package inc'udes cordered insertion routnes. so the Add handler simply makes
an insertion into the ready queue, then preempts the application processor if the head ~hang-
es. The Remove handler removes tae thread and preempts with the new head of the queue.
The Change handler handles requests to change the importance of threads. This change is
accomplished by removing the thread from the queue and reinsenting it with the new impor-
tance. Again, Iif the head of the queue changes, the application processor is preempted with
the new head of the queue.

4.3 Deadline

The Deadline policy always schedules the thread with the closest critical time. For this
impiementation, the Deadline policy was extended to provide for the abortion of deadlines
that have expired. If a thread misses a deadline, 1t 15 forced out of the deadline section of
code and begins executing a user-defined deadline abort handler. If the system has enough

A-20 The Alpha Operating Svstem: Scheduler Evaluation Experiments

cvcles to meet all of the application deadlines, the Deadline policy is opti.aal—every time
constraint is satisfied. If there exist deadlines which cannot be met, which is what is meant
by overload, then the Deadline policy may pertorm very poorly. For example, this policy may
sitempt to run threads which cannot meet their deadlines, but which have early deadlines.
The deadline policy is implemented as a priority scheme where the time to deadline forms the
priority and the head of the queue is the item with the lowest priority. However, the Dead-
line policy uses the timer facilities to make sure each thread is aborted when its deadline
passes.

4.4 Shortest Processing Time

The Shortest Processing Time policy considers only the required computation time for
each thread. SPT always selects the thread with the lowest remaining computation time to
run. It is similar to Deadline and Static Priority in that it uses only a single figure of merit to
determine a schedule. It lacks optimal behavior of Deadline in underload, but may perform
well under overload since it is more likely to pick threads which can be performed. SPT in
general attempts to maximize the system throughput by completing as many threads as pos-
sible per unit time. SPT as implemented for Alpha has the automatic deadline abort mecha-
nism mentioned above. The implementation of SPT is almost identical to that of Deadline,
except the schedule queue is ordered b; the remaining processing time.

4.5 Best-Effort

Given the problems with the other schzdulers, which use only a small portion of the avail-
able informaton to construct a schedule, it is clear that any superior scheduling policies will
have to make decisions based on all the information in the time constraints as well as the ex-
pected computation time. It is known that Deadline scheduling is optimal when the system
is underloaded. An improved scheduler can therefore use a Deadline scheduling method
when the system is underloaded. If the system is overloaded, the scheduler must decide
which threads not to run. Threads that cannot complete their deadlines are one obvious
choice. If that is not sufficient, the scheduler chooses those threads whose completion would
be the least useful to the system. One metnic of utility to the system is called the value den-
sity of a thread. The Archons project has developed a scheduling policy, called the Best-Ef-
fort policy, that uses value density as a metric when shedding load. Refer to [Locke 86] for a
complete description of the Best-Effort algonthm.

The implementation of the Best-Effort policy maintains a queue of threads in deadline or-
der. As each new thread is inserted, the policy checks to see if overload has been reached.
When ovcrload is reached, the policy sheds load by removing the least valuable threads until
the system is no longer overloaded.

The Alpha Operating System: Scheduler Evaluanon Experiments A-2]

5. Experimental Results

This chapter describes the experiments performed on the chosen scheduling policies and
their results. Justification is provided for the particular experiments that were performed, and
the results of the experiments are presented.

5.1 Experimental Design

The goal of these experiments was to develop an understanding of the behavior and per-
formance of the schedulers described in the precedirg chapter. The experiments performed
provide a broad range of quantitative information about each of the schedulers used. By vary-
ing the loading conditions and analyzing the resulting data, many different metrics could be
extracted to compare the policies.

5.1.1 Load Generation

It is possible to increase or decrease the number o1 threads in the application, by chang-
ing the number of balls in the scenario. Having a large number of threads tends to make the
tests more accurate since small variations in the behavior of the threads have less of an ef-
tfect on the large-scale behavior of the application. With more threads it 1s easier to ensure
that the scheduling policy being tested always has ready threads to choose from, thus im-
proving the quality of the information extracted from the test.

The loading characteristics are also affected by the initial state of the balls and paddles.
It is possible, but in general not desirable, to cause the conditions at the start of the simula-
tion 1o be more or less favorable by placing the paddles farther away or closer to the balls
they are catching, increasing the velocity of the balls, etc. This type of testing was done to
analyze individual decisions made by each policy as an aid to understanding their behavior,
but is detrimental to observing long-term effects since it introduces start-up transients that
obscure the steady-state performance.

There are two ways to increase or decrease the computation time required by each thread
in the system. The first method is to change the paddle speed. Increasing the paddle speed
reduces the number of times each thread consumes a block of processor cycles. Decreasing
the paddle speed has the opposite effect. The other way to change the computation time 1is
to alter the movement delay. Increasing this parameter will result in increascd computation
by each thread since more effort is required to move the paddle each step on its way to the
intercept point.

5.1.2 Evaluation Metrics

There are several factors which must be considered in order to make a fair comparison be-
tween scheduling policies. The different policies have implementations which may vary con-
siderably from that which may be optimally attained. Thus, it is important to factor out the
various problems that are due only to the implementation of the policy. The pnmary factor
which affects the apparent performance of the schedulers is the fact that some schedulers

A.22 The Aipha Operating System: Scheduler Evaluation Experiments

may take longer to provide a thread for the application to run after the currently running
thread blocks. This effect is primarily realized in the system throughput, resulting in an ap-
parently faster application. Part of the data collected is a measure of the svstem throughput,
the total number of paddle movements accomplished in each minute. It is possible to utilize
this throughput measure to normalize all of the schedulers to a common measure, which was
selected to be the value to the system accomplished by the Round Robin scheduler. To de-
termine the normalized value to the svstem obtained by a given scheduler, it is only neces-
sary to divide by the throughput measure of the policy and multiply by the throughput mea-
~sure of Round Robin. In other words, the data is interpreted as though it came from a sched-
uler which had the throughput of Round Robin, but made different decisions. This enables the
examination of the decisions made by the scheduler independent of the quality of the policy
implementation. '

The time-value curve of a system activity is composed of information on how the comple-
tion value of a segment of code varies with time. In combination with the importance, it can
provide the scheduler with knowledge of how much value the system would accrue from the
computation if the activity was scheduled at a certain time. A scheduling policy should in
theory be able to determine the most valuable schedule possible from this information. How-
ever, some policies use only subsets of this information, and use the information in different
ways, and thus may create other schedules of varving worth. The aggregate value to the
systemn created by each scheduling policy's allocation of computing cycles is the primary met-
ric used to compare policies in this report. Thus the main criteria we will use as a metric to
compare scheduling policies s the extent to which each policy maximizes the value provided
to the system by the application. This is the logical basis on which to judge schedulers,
since a scheduling policy is intended to translate as best as possible the characteristics of
each thread into a good schedule for the system. Since the set of characteristics provided by
threads in Alpha is the completion value as a function of time, then the 1deal scheduler is one
that selects the schedule that provides the greatest value. Over long periods of time, the
better policies will provide mcre value to the system than inferior ones.

The second major metric used to compare policies is the percentage of the time con-
straints met by each policy. This metric is of secondary impornance since maximizing the
number of met time constraints does not necessarily maximize the value obtained for the
systemn. Nevertheless, it may provide clues as to why different policies perform as they do.

5.2 Behavior Analysis

To understand why each scheduling policy behaves as it does, it is helpful to examine
some specific scheduling scenanos and to analyze how each of the schedulers would respond.

The first scenario of interest is one where all the balls may be caught, but only if a certain
sequence is followed. This condition is shown in Figure 4. In this picture, ball A takes long-
er to return to the intercept level than ball B. Static Priority will fail in this case since ball B
bounces twice for every single bounce of ball A. If one were to assign a higher priority to ball
A, ball A would always be caught first and ball B would be missed on its second bounce. If

The Aipha Operating Svstem: Scheduler Evaluation Experiments A-23

Figure 4: Dynamic Priority Example

‘

N
| | ! '
]] 1]

Figure 5: Inverted Deadline/Value Example

one were to assign a higher priority to ball B, A would be missed. Both Deadline and Best-
Effont, on the other hand, would catch ball A, then ball B twice, then ball A again. SPT would
give a higher priority to catching B, which takes less computation time, and so would work
exactly like Static Pnority when the higher priority 1s given to ball B.

A-24 The Alpha Operating Svstem: Scheduler Evaluation Experiments

-)

— =3 =/ /3

- - -— -

Figure 6: Simple Overload Example

Another underload scenario is shown in Figure 5. There are four balls with values 1
through 4. The value 4 ball is farthest from its intercept point and value 1 ball is the nearest.
The paddle assigned to each ball is one time unit away from its intercept point and each ball
1s as many time units away from the intercept point as its value. In this case, the urgency of
each computation is the inverse of the importance of the computation (i.e., the higher the val-
ue of the ball, the less urgent it is to catch it). Static Priority will fail badly on this scenario.
It will first move to intercept the value 4 ball, thus dropping the value 1 ball. It will then
move to intercept the value 3 ball and drop the value 2 ball. Static Priority will successfully
catch the balls of value 3 and 4, but will drop those with value 1 and 2. Both Deadline and
Best-Effort will catch all of the balls in this scenario, while SPT will act in random order (all
the paddles take one time unit to move into position).

The next case of interest is one where it is not possible to catch all of the balls (Figure
6). The value 5 ball is three time units away from the intercept point, as is its paddle. The
value 3, 2 and 1 balls are also each three time units away from their respective intercept
points; but their paddles are each one time unit away from the intercept point. Static Priority
would successfully catch the value 5 ball, dropping balls of value 3, 2, and 1 in the process.
Best-Effort would recognize the overload situation and abort the catching of the value 5 ball
in favor of catching the value 1, 2, and 3 balls that provide more value to the system. Dead-
line would catch two of the three smaller value balls, then select randomly between moving
one time increment toward the value 5 ball (which now cannot be caught) or catching the
third small ball. SPT would, in this case, successfully catch the three small balls, because
they all require fewer computational resources to complete.

The Alpha Operating Svstem: Scheduler Evaluation Experiments A-25

(I I C— 1

—— e - —

Figure 7: Value Selection in Overload

Another interesting scenario is shown in Figure 7. This figure represents another over-
load situation. All three balls will arrive at their intercept points at the same time (two time
units). Each of the paddles is only one time unit away from their intercept points. Both
Best-Effort and Static Priority will select the value 7 and 9 balls, while both SPT and Dead-
line will select randomly (all have the same deadline and computation time).

Finally, there is the case in which one ball is completely impossible to catch. Such a sce-
narto is shown in Figure 8 where a ball of value 3 is one unit of time from its intercept point,
while its paddle is two time units away. There is another ball of value | which 1s one unit of
time away from the intercept point, as is its paddle. Static Priority will trv to catch the un-
catchable ball of value 3 while disregarding the catchable value 1 ball. Best-Effort will abort
the paddie of the value 3 ball since its deadline cannot be made, and will catch the value 1
ball. Deadline will choose randomly between the two balls (which have the same dead-
lines). SPT will catch the ball of value 1 since it requires less computation time.

These scenarios indicate that the Best-Effort policy behaves will in a vanety of different
loading conditions. Unlike other policies which may perform well in a limited domain, the
Best-Effort policy uses the full information available in the time-value function specifications
to intelligently schedule tasks in both underload and overload situations.

A-26 The Alpha Operating Svsiem: Scheduler Evaluatnion Experiments

5
|

Figure 8: Impossible Time Constraint

5.3 Simulation Results

Several metrics for long-term performance were collected from each scheduler. The first
measure examines how sensitive each scheduler was to vanations in thread importance (i.e.,
ball value). The second metric records how successful each of the scheduling policies was at
meeting the application time constraints (in terms of percentage of time constraints satis-
fied). The final indicator combines both ball value and time constraint measures to judge the
overall performance of each policy.

53.1 Thread Importance Sensitivity

As may be seen from the graphs of percent caught versus ball value (shown on the fol-
lowing pages), each scheduler has a characteristic form indicating the trade-offs it makes
when catching balls of different values. Round Robin, for example, has a flat graph (Figure 9)
indicating that it does not distinguish between threads based on their value. Each thread in
the system receives the same fraction of the available processor cycles. As expected, in-
creasing the paddle speed increases the application’s ability to catch balls. The Deadline al-
gorithm (Figure 10) is also not responsive to ball value and shows similar behavior.

The Shortest Processing Time algorithm (Figure 11), which also disregards thread impor-
tance, shows some sharp differences between ball values. This effect is due to the particu.ar
way in which the application interacts with this scheduling policy. The amount of movement,
and thus the compute tume, needed to catch a given ball often increases after the ball is
missed. The paddle needs to move farther to make the next catch, has a greater required
computation time, will thus be less likely to be scheduled, and so also less likely to catch the
ball. If, on the other hand, the paddle catches the ball, it will be closer to the intercept point
for the next catch, will require less computation time, will be more likely to be scheduled, and
will be more likely to again catch the ball. Thus, balls, once caught, are likely to continue be-
ing caught. Once dropped, they are likely to continue being dropped. Therefore each ball will
tend to either be caught well or caught poorly for most of each run. This explains why the
SPT algorithm shows such a wide variation in catching percentages with respect to ball val-
ue. Most applications do not exhibit this type of behavior.

The Alpha Operating System: Scheduler Evaluation Experiments A-27

1001
90r
O——© Faddle Speed 4
80r O — © Paddle Sreei 17
O- —8 FPaddle Speed 12
nr X----x Faddle Sreez 1°F
60
50r
40
30F IR GO
b, RO /‘8\‘\ --------- o AR ER RN E
20t ,’Q"“u-&ﬁ-*w— = O . -——
g/ - - _,’e\ - - -
101 o o 2 & =
0 i 2 3 4 5 6 7 8
Ball Vaiue
Figure 9: Round Robin Percent Caught
100r
90 r
O—0 rfaddlie Sreez q
80T O — © Paddle ZIpeez 1°
O~ —8 FagZlle Igeex 1.
nr M----X Faiile Zreez 1P
60
50 X PRS- URRREEE X G X
et ~ e e L SRS XS ')
4ot B - RN B Chal g
- s —- N ’:‘B'%/ -
— Ve - \\ e
30r ~-9 o OS---©
o~ —,
101
0 1 2 3 4 5 6 7
Ball Vaiue

Figure 10: Deadline Percent Caught

A-28 The Alpha Operaning Svstem: Scheduler Evaluation Experiments

100
o——© Faddle Speed 4
QOF o~ — © rFaddle Speed 1
G- —8 Paddle Speed 12
80r x----x Paddle Speed 1 X
70t
60
50
40r
30r
20r
101
Vi e, 4 1 e 1 .. J
0 1 2 3 4 5 6 7 8
Ball Value
Figure 11: SPT Percent Caught
1001 Xooreene —— g
; F /
0t ; / %
——— Paddle Sgeed 4 : / /
got — — - Paddle Speed 10 y , /’
— —— Paddle Speed 12
A S BT Paddle Speed 1% / /6
60
50
40t
30
20fF
10
—
o] 8
Ball Value

Figure 12: Static Priority Percent Caught

The Alpha Operanng System. Scheduler Evaluanion Experimentis A-29

100
--------- X
%t % s
Faddle Speed 4 e
80+ — — - Ppaddle Speed 1C R /E]’ /
i — — Paddle Speed 12 R AL X ,
£ o Faddle Speed 1% N :\ yd /
60 '
50r
40 r
30r
201
10}
0 1 2 3 4 5 6 7 8
Ball Vaiue

Figure 13: Best-Effort Percent Caught

Static Prionity (Figure 12) has a very low catch rate for the small value balls, jumping to
an almost perfect rate balls of higher values. Static Prionity scheduling always runs the most
important threads first. It therefore catches the high value balls (if it can), then attempts to
catch the next highest value balls, etc. Increasing the paddle speed enables the application
to catch more of the top value balls.

The characteristic curve for the Best-Effort policy (Figure 13) is smoother than those for
the other policies. Like Static Priority, Best-Effort has a very good catching rate for the high-
est value balls. However, the rate of decrease between the high value balls and the lower
value balls 1s more continuous. This behavior is a very important characteristic of the Best-
Effont scheduler. Instead of concentrating only on the highest value balls, it tries to catch the
combination of balls that maximizes the total value to the system. It may often be possible
to schedule the successful capture of several balls of low value in place of a single one of
higher value, and as a result provide better total value to the system. Compared to Static
Priority’s insistence on catching high valued balls to the exclusion of others, this selection
can result in a considerable increase in the value obtained.

5.3.2 Maeeting Application Time Constraints

One important method of comparing the schedulers is to examine how well each of them
meets the thread deadlines, i.e. what fraction of the balls are successfully caught. The ratio
of balls caught to the total number of potential catches is shown for each scheduler as a func-
tion of paddle speed in Figure 14. As expected, the ability of any scheduler to meet dead-
lines, and thus to catch balls, increases with paddle speed. It is interesting to note that the

A-30 The Alpha Operating Svstem: Scheduler Evaluation Experiments

Deadline policy fares very poorly on this experiment. Since the system is heavily overloaded
(all percentages are «<100%), Deadline scheduling may waste significant time attempting to
meet impossible time constraints. The SPT policy performs well since it concentrates on
tasks which are easily accomplished. The Best-Effort policy performs as well as or better
than any of the other poiicies because of its intelligent overload handling.

53.3 Maximizing Application Value

The total value metric is determined by dividing the value of the balls caught by the value
that would have been obtained if all of the balls were always caught. Figure 15 illustrates
the performance of each scheduling policy using this measure.

[t is worthwhile to compare Figure 14 and Figure 15 (the two graphs are extracted from the
same experimental data). The scheduling policies that ignore thread imporntance—Round
Robin, Deadline, and SPT—catch almost the same percentage of balls as they do of value
(their curves are practically identical in the two graphs). The two policies that consider
thread importance—Static Prionity and Best-Efforr—catch more valuable balls and are shift-
ed up by approximately 10% in the graph that indicates the percentage of the total value
caught (Figure 15).

The policies that performed the worst using the value metric, Round Robin and Deadline,
are also the schedulers that did the worst job of meeting time constwaints. Clearly they
achieve less value to the system simply because they catch fewer balls. The Shortest Pro-
cessing Time scheduler achieves the next highest value to the system. It performs better
than Round Robin and Deadline because it catches more balls, but it does worse than Static
Prniority and Best-Effort because it ignores value. Static Priority and Best-Effort are the
most successful and are similar in performance for this particular set of experiments.

Static Priority and Best-Effort, are worthy of further consideration. One reason theyv per-
form well is that, unlike the other schedulers, value information plays an important part in
scheduling decisions. One might wonder why Static Priority, which does not consider time
constraints, 1s so successful at accruing value? The answer is found by examining how Static
Priority distributes cycles to an arbitrary mix of threads. In overload, only the highest impor-
tance threads run (excluding all others) regardless of how likely their time constraints are to
be met. In the short term, this may result in more dropped balls. If a thread's ability to meet
an individual time constraint were independent of its past history, this behavior would resulit
in a poor long-term performance as well. However, if expending cycles on a time constraint,
even if the constraint is not satisfied, serves to improve the chances of meeting the next time
constraint a thread establishes, then the cycles are not wasted and may benefit the system
in the long term. This effect manifests itself in this application. If a scheduler concentrates
solely on the highest value balls, some balls that could have been caught may be dropped.
However, because they are receiving the majority of the processing cycles, the high value
balls will tend to be the ones which are the easiest to catch. As a result, scheduling deci-
sions which appear to be bad based on the available information may be good in the long
term. Some applications do exhibit this type of “feedback;” however, the majonty of tasks
have a greater independence between activations.

The Alpha Operating System: Scheduler Evaluatnon Experiments A-31

1001
0r
o~——©0 Rcund Rcrin
SOT - — © Static Priority Y
X
- —8 Deadline 2T ©
7or X--aex SET el
o a mest E2fom e S
t Effcrs T -
60 ,&' - -
-"--. -~
I /' /e ;
ZOT =
10
0] 2 4 6 8 10 12 14 16
Paddle Speed
Figure 14: Percent of Balls Caught
1001
or 0—o Rcund RO "-&
bpeted Lin ”.—-/"
80 @~ — © Static Froor:ily /‘/-g/" X
B~ —8 Deadline -—
.
7or Meee-X SPT /.% a
A——4& Best Effcr: —~ o —
60 /,.' /’
~7
soL ////- ‘.’-‘. //D/
/’"’ .-".. /B’/
a0t & . _—
X -
30f /,/
T
20T
10
0 2 4 6 8 10 12 14 16

Paddle Speed

Figure 15: Percent of Value Caught

A-32

100

S0r

80
70
60
50
40
30
20

10

100
90
80
70
60
50
40
30
20

10

The Alpha Operarting System: Scheduler Evaluation Experiments

O~ — © Static Priority
A——A 3est Effort

/A
.-/
L—= __-®
L _ -
o’ -7
_____ e”
P
2 4 6 8 10 12 14 16

Paddle Speed

Figure 16: Percent of Value Caught with Random Replacement

O — © Static Priority
A——4& Best Effcrt
./.-A
i
-/
- / ’ﬁ
& -7
~ o--—-—~"""" ©
.- s
./ s
P 7
A/ //
s
P
s
7
&
L L L Jl 1 1 A J
2 4 6 8 10 12 14 16

Paddle Speed

Figure 17: Percent of Value Caught with Smaller Value Variance

The Alpha Operating Svstem: Scheduler Evaluanon Experiments A-33

To study the behavior of independent tasks. a second senes of experiments was per-
formed. The application was altered so that after balls are caught or dropped they move to a
random point in the air and begin falling again. Therefore, cycles spent on an unsuccessful
catch is time poorly spent. A bad short-term decision cannot in general be converted into a
good long-term one. The results of this modification are shown in Figure 16.

Another point to consider is whether the choice of values for the eight balls has an effect
on the performance of the two schedulers that consider thread importance. The original set of
eight balls valued one through eight was replaced by three balls of value six and five of value
five. The results are shown in Figure 17. The comparative performance of the Best-Effort
policy improves with this change in value distribution. The key to understanding this relative
improvement in Best-Effort’s performance is the fact that the balls with the highest value
are no longer so useful to the system that focusing on them to the exclusion of others is prof-
itable.

A-34 The Alpha Operating System: Scheduler Evaluation Experiments

6. Conclusions

The best scheduler for a particular application would often be one designed precisely to
match the requirements of the system. Such a scheduler could have complete knowledge of
the application and could exploit application-specific information to achieve the best possible
performan:e. For certain low-level systems where there are few different types of activities
or where the events occurring in the system are completely predictable, custom schedulers
- may be feasible. As the variety of time constraints and frequency of unexpected events in-
creases, however, it becomes more and more difficult to construct an application-specific
scheduler that will operate correctly.

Since building a custom scheduler for each application is impractical, scheduling policies
have been developed that utilize application-specified hints or requirements information to
schedule activities in the way that will most benefit the application. In general, the more in-
formation given to the scheduler, the better the scheduling decisions can be. One conse-
quence of using additional information is that scheduling decisions may become more com-
plex. It is therefore necessary to balance the complexity of the scheduling operations with
the resulting improvement in the application performance.

In the scheduling policies tested in this work, the amount of application-specified informa-
tion used to make scheduling decisions varied from none (Round Robin) to a complete time-
value function (Best-Effort). Predictably enough, it was the scheduler that used the most in-
formation about the application, Best-Effort, that showed the best behavior. The tests indi-
cate that the extra computation time required in the Best-Effort algorithm was small enough
to make the Best-Effort scheduling policy a good balance between performance and computa-
tional complexity.

The Alpha Operating System. Scheduler Evaluation Experiments A-35

References

[Jensen 75] Jensen, E. D.
Time-Value Functions for BMD Radar Scheduling.
Technical Report, Honeywell System and Research Center, Tune 1975.

{Locke 86] Locke, C. D.
Best-Effort Decision Making for Real-Time Scheduling.
Ph.D. Thesis, Deparmment of Computer Science, Carnegie-Mellon
University, May 1986.

[Northcutt 87] Northcutt, J. D.
Mechanisms for Reliable Distributed Real-Time Operating Svstems:
The Alpha Kernel.
Academic Press, Boston, 1987.
[Northcutt 88a] Northcutt, J. D,

The Alpha Operating Svstem: Requirements and Rationale.
Archons Project Technical Report #88011, Department of Computer
Science, Camegie-Mellon University, January 1988.

[Northcutt 88b] Northcutt, J. D. and Clark, R. K.
The Alpha Operating System: Programming Model.
Archons Project Technical Report #88021, Department of Computer
Science, Camnegie Mellon University, February, 1988.

Time-Driven Scheduling of Composite

Real-Time Activities

David P. Maynard

Department of Electrical and Computer Engineering
Carnegie Mellon University

November 1, 1989

Time-Driven Scheduling of Composite Real-Time Activinies B-i

S.
6.

Table of Contents

INtrOdUCHION .cuueiereirneenrcnenrunenineesenennessesssecsssressesssnssonsssarsssssssssssssssansennes B-1
1.1 Application Domain ... B-1
1.2 Related WOTK c.oooiiiiii e B-3
1.3 Technical APProach ... B-5

Computational Model.....ciineeneenneiicnisnineneesicsenssecsessssesssesssssssnaenes B-6
2.1 Modeling Timeliness REQUITEMENTSooriimiiiiiiiininiic s B-6
2.2 Modeling COmMPOSIte ACHVILIES ..uiviiiiiriiriiiiineriieiirie s seeene s easeesnesaseneas B-8

Scheduling TeChRIQUES coueeeenieeeeeeenteec et sneseenereesnnsenaene B-10

Evaluation Methodology w.ceeeiecenerveneniieieeeeeeeeeeencccacneecnneneens B-12
4.1 Evaluation MEMICS co.eeiiiiiii ittt eeeme e e saes B-12
4.2 Workload Generation......ccecueeuireiiiiririiessieseeeeesteesieseaseaseessesresssensesaseeneenns B-13

Research SChedule . eeecniniiccnniiianicninetnnisensascessaesssanssanens B-15

Research Contributioncceinieniinnciicnsninncseensercneeesvsssescssensecnns B-16

Bibliographycceeneecrncceieccenicseeenen vessesscssnsssssrstsssantsesssstssansernessssssnssanas B-17

Time-Driven Scheduling of Composite Real-Time Activines B-1

~

1. Introduction

Previous real-time scheduling research has primarily addressed simple tasks and has not
considered that time-constrained activities may span multiple nodes in a distributed system
and may have muluple, nested timeliness requirements. This research will investigate how
limited additional information (relative to current algorithms) about the execution require-
ments of these composite real-time activities can be used to improve the quality of schedul-

ing decisions made at each node in a distnbuted svstem.

1.1 Application Domain

There are several classes of real-time systems [Bennett 88]. This work considers a
class known as supervisory real-time systems. Typical applications of this type include in-
dustrial factory automation (e.g., automobile manufactuning), platform management (e.g.,
space stations), and military command and control (e.g., air defense). These systems must
operate correctly in highly dynamic environments where requirements and resources may
vary gradually or may change suddenly without waming. Often, the applications execute on
distributed computer systems where processing nodes are physically separated to reflect the

structure of the problem or to enhance availability and survivability.

Supervisory real-time systems differ from low-level sampled data monitoring and control
systems in several significant ways. Unlike low-level systems which consist primarily of
simple periodic tasks, supervisory real-time systems manage a wide range of complex activi-

ties. These activities are characterized by the following features:

* Activities have stochastic arrival and execution times. It is often difficult or impossible
to predict when or how often activities will be initiated.

+ Activities may have a variety of crtical timeliness requirements including hard dead-
lines, which indicate that an acuvity must be completed within a specific time interval
for its result to be useful, and “softer” time constraints, which describe activities for
which the value of completing the work varies across time.

* Activities are often composed of several execution srages which may involve computa-
tion on several different nodes in the system.

* Individual activities may have multiple nested timeliness requirements imposed by dif-
ferent levels of the application environment.

We call this class of activities which may have multiple execution stages and nested timeli-

ness requirements composite activities.

B-2 Time-Driven Scheduling of Composite Real-Time Acnvities

Composite Activities: An Example

Consider an automated toy factory. The factory contains several robots—some of which
are equipped for a variety of tasks and some of which are specialized for cerrain duties. The
movement of each robot 1s directed by a local, low-level control system. These low-level
controllers are, in turn, operated by a distributed supervisory real-time system that is re-
sponsible for coordinating the robots and for guiding overall producton.

Among other things, the factory produces toy fire trucks. The individual components for
the trucks (chassis, body, fire ladder, and tires) are fabricated at another site and brought to
the automated factory for assembly. The steps in assembling a truck are: 1) attaching the
ladder to the body. 2) applving glue to the chassis, 3) joining the body with the chassis, and
4) attaching the wheels. One type of robot is responsible for attaching the ladder and gluing
the body and chassis together, while a second robot is specialized for attaching the wheels.
Because of its special input/output requirements, the wheel robot is controlled by a separate
processing node.

The assembly of each fire truck is controlled by a single high-level actvity in the distnb-
uted control system. In general (although it may vary with demand), the assembly of a truck
should be completed in four minutes. After directing the main assembly robot to pick up the
appropriate parts and attach the ladder, the robot is instructed to apply glue to the chassis.
It is best to let the glue to dry for 30 seconds before joining the parts. The drying time allows
the glue to become “tacky,” reducing the chance of a defective bond. Because glue starts
drying as soon as it is applied, it is also important to join the body to the chassis within a
certain time. Otherwise, the truck may fall apart. While it 1s best if the parts are joined with-
in 60 seconds, it is acceptable to wait as long as 90 seconds. The penalty for waiting is that
more defective trucks may be produced, potentially reducing profits. If more than 90 seconds
elapse, the partially completed truck is discarded. Once the mick chassis is assembled, it is
passed to the second robot which attaches the wheels.

When one or more of the robots is broken or demand for the trucks is high, the assembly
timing requirements are adjusted to reduce the glue drying time and reduce the overall time
allowed for completing the assembly.

The muck assembly activity has several significant features. First, it consists of multiple
stages (i.e., attaching the ladder, applying the glue, joining the body to the chassis, and at-
taching the wheels) and involves processing on more than one node. Second, it involves a
time-constrained assembly stage (gluing and joining) which has a hard cut-off. This con-
straint, however, 1s not a classical hard deadline since an interval of decreasing utility pre-
cedes the cut-off time. Third, the time constraint for joining the chassis and body is nested
within a higher level timeliness requirement that specifies the total assembly time for the
truck. Finally, the system load and timeliness requirements may change because of in-
creased demand or equipment failures.

Time-Driven Scheduling of Composite Real-Time Acuvines B-3

Because of the potentally complex and dynamic nature of activities and their time con-
straints, effective processor scheduling for supervisory real-time svstems is very difficult.
The scheduling problem is further complicated by the requirement that the svstems cope
gracefully with both transient and permanent overloads caused by changes in the environ-
ment (e.g., alarm conditions) or by reductions in the available resources (e.g., node failures).

The goals for scheduling resources under these conditions can be summarized as follows:

» When sufficient resources are available, activities should be scheduled in such a way
that their timeliness requirements are satisfied.

* When the system 1s overloaded, activities should be temporanly removed from the
“schedule so that the timeliness requirements of activities that do execute will be satis-
fied. Further, the scheduler should choose acuvities to execute so that the ones select-
ed will be the most beneficial to the application.

The above goals are distinct in several wavs from those often suggested for low-level re-
al-ime systemns. In particular, these goals consider both the timeliness requirements and
the relative value of different acuvities in describing how schedul'ng deci ‘an Lhould be
made. The goals also recognize that activities with soft time constraints may, in some cir-
cumstances (e.g., alarm conditions), be more valuable to the application than those with hard

deadlines.

1.2 Related Work

Much of the previous real-time scheduling research is based on different assumptions
about the application environment and the associated scheduling requirements. Many re-
searchers have considered systems where the workload is very predictable. Other work has
concentrated on trying to guarantee hard deadlines under normal conditions—often at the ex-
pense of proper overload handling. The research which has investigated more flexible over-
load handling does not address the composite nature of activities and was not designed for

distributed environments.

A significant amount of research has explored the use static prionity assignments to meet
the real-time requirements of an application. Liu and Layand [Liu 72} described a technique
known as rate monotonic scheduling in which static priorities are used to schedule periodic
tasks that have hard deadlines. In {Sha 86] the technique of perind rransformarion is sug-
gested as a method of achieving better overload behavior in these peniodic svstems. Lehocz-
ky, Sha, and Swuosnider ([Lehoczky 87], [Swosnider 88]) have explored how server tasks
can be used in a rate monotonic environment to provide fast service for aperiodic tasks that

do not have explicit time constraints. This work has been extended in [Sprunt 88] to consid-

B Time-Driven Scheduling of Composite Real-Time Acnvines

er aperiodic tasks with hard deadlines. Rate monotonic scheduling has also be used as the
basis for work at the University of Illinois ([Lin 87], [Liu 87], {Chung 88]). where research-

ers have considered methods for scheduling computations that may yield imprecise results.

While advances in priority scheduling have been proniising, several factors limit its use in
supervisory real-ume systems. The static scheduling techniques require a significant
amount of a priori knowledge about task amval rates and times. It is often not possible to
know this information in dynamic environments. The approach also does not distinguish be-
tween the timeliness requirements and the imporntance of individual tasks. An actvity is not
necessarily urgent just because it Is very important. Nor, is it very important merely be-
cause it is urgent. Because both the urgency and importance must be statically encoded into
a single value, priority-based schemes are, in general, unable to support the kind of dynamic
normal-case scheduling and overload handing that is needed in the superviscry real-time do-
main.

The second major area of real-time scheduling research has investigated methods of us-
ing explicit deadlines to schedule real-time activities. In most cases this work has only con-
sidered hard deadlines. The earliest deudline (ED) algonithm has been shown to be optimal
for uniprocessors by [Dertouzos 74]. Unfortunately, the basic ED scheduling algorithm 1is
unstable under overload conditions [Conway 67]. Several researchers have considered
methods of improving the overload behavior of deadline scheduling. At the University of
Massachusetts, {Ramamritham 84] has developed dynamic scheduling techniques which will
only accept a task for execution if it can be guaranteed to meet its deadline. However, the
consequence of this guarantee is that extremely imporntant activities may be blocked by less-
important activities that have already been scheduled. To handle this problem, the seman-
tics of the guarantee have been relaxed in {Biyabani 88a] and [Biyabani 88b] to permit high-

er-prionty tasks to revoke guarantees made to lower-priority ones.

Locke developed a scheduling algorithm known as the best-effort (LBE) algorithm [Locke
86] which handles overloads in a manner more consistent with the goals of supervisory real-
time systems [Jensen 85]. A Mach implementation and complexity evaluation of Locke's
oniginal algorithm 1s described in [Wendort 88]. An improved best-effort algorithm, imple-
mented for the Alpha operating system [Northcutt 88b], has been evaluated in [Trull 8]. In
related work, Clark has developed an approach to scheduling dependent real-time activities
with similar goals [Clark 88]. Although previous work in this area has been very successful,
limitations still exist. In particular, previous work has not adequately considered how physi-

cal distnbution or nested timeliness requirements atfect the scheduling problem.

Time-Driven Scheduling of Composite Real-Time Acuvites B-5

Little research has been conducted to investigate the effects of physical distribution on
the scheduling of composite real-time activities. Most distributed scheduling papers de-
scribe load-sharing techniques, but never consider the possibility that a time-constrained ac-
uvity may span multiple nodes. Examples of results which fall into this category are
[Ramamritham 84], [Stankovic 84], [Stankovic 85], [Zhao 85]., [Kurose 86]., and [Kurose
87]. The most closely related research addresses the scheduling of groups of precedence-re-
lated tasks with hard deadlines [Cheng 86]. Cheng describes methods of synthesizing inter-

mediate time constraints known as pseudo windows to ensure that tasks in a group are

scheduled to satisfy the group's deadline!

In general, the pseudo window technique re-
quires that complete knowledge about the execution characteristics of all group members be
available when the first member of the group armves. Although such extensive knowledge
does allow more intelligent scheduling decisions to be made, the system dynamics often Limit

the extent to which this information is available.

Related scheduling work in the field of operations research has addressed the problem of
multistage production planning [Johnson 74]. Unfortunately, techniques such as linear pro-
gramming [Winston 87] which are often employed in these situations are not practical for on-

line scheduling.

1.3 Technical Approach

As the previous section indicates. existing research has addressed only parts of the su-
pervisory real-time scheduling problem. This work will extend the range of that coverage to
include the scheduling of composite real-time activities—that is. time-constrained activities
that mayv span multple processing nodes and may have multiple nested timeliness require-

ments.

This research will be divided into three major stages:
+ creation of a computational model for composite real-time activities,
* development of time-driven scheduling techniques for composite activities, and

+ analysis and evaluation of the proposed technigues.

The following sections descnbe in greater detail the work involved and results to date in

each of these areas

! This use of pseudo windows should not be confused with the case where nested time constraints are actually
imposed by the applicaton.

B-6 Time-Driven Scheduling of Composite Real-Time Activiries

2. Computational Model

The first stage of the research involves the development of a new computational model
which can be used to describe the behavior and timeliness requirements of composite real-
time activities. The model must account for the physical distribution of time-constrained ac-
tivities and must specify meaningful methods for composing multiple nested timeliness re-

- quirements.

2.1 Modeling Timeliness Requirements

This work uses the notion of rime-value functions [Jensen 75] to specify the timeliness
requirements of activities. Time-value functions express the time-varying value to the apph-
cation of completing an activity. Some example specifications are shown in Figure 1.. Using
this model, a hard deadline (Figure la) is specified by a step function where the completion
value 1s a constant positive number between the request time (t,) and the deadline (z4), and
1s zero after the deadline. The glue/join activity described in the toy factory example would

have a time value function similar to Figure 1b, where the utiity of finishing the work increas-

A 3
Value Value
| l Time ! ! i ' Tlm:e
tr td } ! r rc I Ic 2 [a
(a) (b)
A
Value Value
| > -
| i i I :
Ie ! ! Time ¢ t I Time
r c a r ¢ 4
(a) (b)

Figure 1: Example Time-Value Functions

Time-Driven Scheduling of Composite Real-Time Activities B-7

Value

1
early mid v late l

Figure 2: Time-Value Function Specification

es (as the glue becomes tacky) untl a critical time (t;), 1s constant for an interval (until 7.2,

when the glue begins to dry), and gradually decreases to zero afterward (when the partially
assembled truck must be discarded at 1,4, the abort time).

In theory, time-value functions may have arbitrary shapes. To simplify their specification
in real systems such as [Locke 86], [Tokuda 87], and [Northcutt 88b]}, time-value functions
are often modeled by a set of continuous functions and reference times. In this work, tume-
value functions will be specified by three reference times (¢, #¢;. and f.2), and three continu-
ous functions (Vearily, Vmid, and Viare) (see Figure 2). In the most general case, each of the

functions has the form:

V)= K; + Kyt + Kyi° + K e'Kst
In most cases, however, this research will consider only linear functions (i.e., K3=K,=0).

This restriction still allows most interesting time-value functions to be approximated, yet
greatly simplifies the mathematics which must be handled by the scheduler. The abort time
(14), the time after which the activity is aborted and any exception processing is initiated, is

defined as the earliest time when Viagre = 0.

When timeliness requirements are nested, appropriate techniques of composing the time-
value functions must be developed. It is not sufficient to consider only the innermost require-
ment since that constraint may, in fact. not be the most stringent. Nor may it be appropnate
to use only the most stringent constraint when deciding on the ultimate value of an activity.
In the toy truck example, there may be no inherent value in successfully gluing the chassis
and body together if the wheels are never attached. At present, work is continuing on efforts

to identify appropriate methods of composing nested time constraints.

B-8 Time-Driven Scheduling of Composite Real-Time Acnvites

2.2 Modeling Composite Activities

Previous time-driven scheduling research has only considered activities that remain lo-
cally executable from the time they arrive unul they complete. Under these conditions, the
execution characteristics of an activity can be modeled by a sinele statistic, the estimared
computation time (ECT). As explained in the truck assemblv problem, composite real-time
activities may involve computation on several processing nodes. Because of this distribu-
tion, the total computation time will also be divided among multiple nodes. To completely de-
scnbe the execution characteristics of a distibuted activity, the computation time on each

node must be specified.

One useful way of modeling the distributed activities is to view them as having multiple
stages—each of which may execute on a different processing node. An activity can then be
descnibed as a linear-connected graph of execution stages. Time constraint specifications
can be modeled by adding graph elements corresponding to the beginning and end of each
time constraint. Figure 3 ilustrates how the toy truck assembly activity is modeled using
this technique. For each execution stage, the estmated computation time, ECT(n), of that

stage is specified.

ECT(I) ECT(2) ECT(3) gECTM) 2
JI77777777777774
Attach | N Attach
Ladder Apply Glue Join Pieces Wheels
Key
_
Execution on Node 1 | ECT(m) Begin Time Constraint [(
BN
) . R /EI,,’,,’ %)) H
Execution on Node 2 CT('!)// End Time Constraint
//////////// /

Figure 3: Graph Model of Toy Truck Assembly

Time-Driven Scheduling of Composite Real-Time Activites B-9

Although the full generality of the graph-based model is not strictly needed to handle dis-
tributed activities, the model 1s useful since 1t can be easily extended to include general re-

source requirements and the concurrent execution of component stages of an activity.

B-10 Time-Driven Scheduling of Compusite Reai-Time Acavities
g v r

3. Scheduling Techniques

Once the computational model has been finalized. new time-driven scheduling techniques
will be developed. These techniques will use limited information about the umeliness re-
quirements and execution characteristics of composite real-time activities to ensure that as
much useful work as possible is completed by the application. Under normal (i.e., non-over-
load) conditions, the algorithms will attempt o satisfy all of the system timeiiness require-
ments. When overloads occur. the algorithms will be designed tp shed load intelligendy so
that activitdes which are scheduled will meet their ume constraints and will contribute as

much value as possible to the system

The scheduling problem can be divided into three major components:
+ ordering of activities,
+ overload detection, and

+ load shedding.

Several techniques have been suggested for ordering time-constrained activities. Both
ED and leust slack (LS; ordering are known to be optimal for uniprocessors [Mok 83]. Unfor-
:unately, neither approach is optimal in the muluprocessor case. Simulation results {Locke
86] have shown, however, that ED scheduling still performs well on multprocessors. {Stone
77] suggests that network flow algorithms can be used effectively for processor scheduling.
Still another approach handles task ordering as a planning problem where search techniques
are used to find an acceptable execution order [Ramamritham 84]. These search techniques
are imperfect, but tractable. Several task ordering alternatives will be considered for possi-
ble inclusion in the new scheduling algorithms. The most likely candidates irclude ED order-

ing, and an explicit placement algorithm which allows varying levels of “greediness™ to be

applied.

Overload detection relies on the use of execution time estimates to determine whether
there are enough processor cvcles to schedule all contending activities within their time con-
straints. In many dvnamic real-time systems, this calculation is performed during the task
ordering process by calculating the cumulative slack time for the processor. If the cumulauve
slack for any time interval drops below zero, the processor is overloaded. The problem of
overload detection is complicated by distnbuted computations. It the distnbution s not con-
sidered, the local demand for the processor will be overestimated. This exaggeration could
cause “false” overload indications to be generated, potenually preventing activities from

meeting their time constraints (due to load shedding).

Time-Driven Scheduling of Composite Real-Time Activities B-11

The problem of false overloads can be ameliorated by incorporating additional knowledge
into the overload detection process. The alternative which uses the least additional execu-
tion informauon is one in which estimates for both local compurarion time (LCT) and total
computation time (TCT) are specified as part of a ume constraint. In the general case, the
activity must specify LCT's for each of the nodes it may visit. The local scheduler would con-
tinue to use the TCT figure to determine the ordering of the schedule, but would use the LCT
figure when performing slack time calculations for the processor. The use of LCT and TCT
estimates should reduce the number of false overload signals. However, false indications
may still occur since LCT/TCT estmates do not specify when in an activity’s execution the
processor time will be needed. If most of the required time comes late in the activity, then
more near-term (and fewer far-term) processor cycles may be available than the LCT/TCT
ratio would indicate. More accurate overioad detection could be achieved if ECT's were
available for each stage of an activity's execution. However, additional processing would be
required to process the additional information. It might also be impractical or impossible to

gather such detailed execution profiles.

Load shedding in time-driven systems relies on the notion of value densiry [Locke 86] to
determine which activities are likely to contribute the most to the application. Value density
measures how much value per unit of processing time will be returned to the application for
executing a particular activity. When a limited number of processor cycles are available, exe-
cuting the activities with the highest value density is likely to result in the most useful work
being accomplished. In a distributed environment, load shedding decisions are more difficult
since an activity with a relatively low value density might only require a few cvcles locally
before travelling to a more lightly-loaded node where its time constraints could be satisfied.
The load shedding algorithms should be able to utilize the same types of extended execution
information (LCT, TCT) as the overload detection algonthms, although a bener solutions

would like require cooperation between schedulers at differemt nodes.

The existence of nested timeliness requirements complicates load shedding by making it
more difficult to determine the value density. Since the value of satisfying a time constraint
may depend both on the innermost constraint and on outer-level constraints, a composition
function must be applied to determine the true potential value for the acuvity. Work is in

progress which will specify methods of composing time-value functions.

Research into the specific scheduling algonthms is still in its initial stages. Many of the
tough decisions will be easier to make once the computational model has been finalized and

techniques for composing nested time-value functions have been developed.

B-12 Time-Driven Scheduling of Composite Real-Time Acnvities

4. Evaluation Methodology

The evaluation of the proposed scheduling techniques will judge how well they satisfy the
requirements of the supervisory real-time environment. Simulation experiments will be used
to evaluate the performance of the new algonthms compared to existing methods such as

earliest deadline and Locke’s best-effort approach.

Because the execution of time-driven scheduling algorithms can be costly compared to
other algorithms, scheduling overhead will be explicitly considered in the simulation experi-
ments. There are two primary techniques for estimating scheduling overhead: 1) mathemati-
cally deriving the theoretical complexity of the scheduling algorithm and 2) measuring the ac-
tual performance of a sample implementation. Both techniques yield useful results and will
be employed in this research. The complexity analysis provides worst-case information de-
scribing how the overhead changes with increasing load. Simple Ofn) analysis, however,
does not reveal the magnitude of the constant and scale factors. Actually measuring the per-
formance of a sample implementation provides valuable information about these scale factors
(compared with other algorithms) and reveals how the algorithm behaves on common (i.e.,

non-worst-case) workloads.

Evaluating the proposed techniques using only one or two “real” workloads would likely
skew the results to reflect the peculiarities of the chosen systems. For this reason, a wide
range of synthetic workloads will be used to test the performance of the algorithms. Sensi-
tivity analysis will be used to measure how their behavior changes as different components

of the workload are vaned.

4.1 Evaluation Metrics

Many metrics have been devised for evaluating the performance of real-time scheduling
algorithms. For time-driven systems, the most important measure of an algonithm’s perfor-
mance is how much of an applicaton’s potential value is obtained using the algonthm. Since
the fraction of the maximum completion value obtained for each activity directly corresponds
to how well its time constraints have been satisfied, the value metric indicates both how well
the system time constraints have been satistied, and to what degree the scheduler has suc-
ceeded in scheduling the most useful activities under over.oad conditions. Because optimal
scheduling is intractable in the systems of interest, it is not practical to compute the maxi-
mum value that could actually be gamered by a perfect scheduling algorithm. Instead, a sim-

ple upper bound on the potential value can be generated by summing the maxima of the val-

Time-Driven Scheduling of Composite Real-Time Activines B-13

ues for the activities in a workload. This rotal porential value (TPV)1s then compared to the

actual value obtained (AVO) to vield the percentage of value obtained (P1'O) by the algorithm.

Several other metrnics have been designed to measure how well an algorithm satisfies the
goals of lower-level systems and are not directly applicable to the supervisory real-time en-
vironment. However, some of thes~ low-level metrics can be adjusted to provide useful in-

formation about algorithm behavior for certain workloads.

In systems where all tasks are presumed to have deadlines and are not distinguished by
value, the performance of scheduling algorithms is often judged by monitoring the percentage
of tasks which complete after their deadlines (i.e., are rardv). In these cases, the mean tardi-
ness and/or the maximum tardiness of the late tasks are often considered as well. For time-
driven systems, the percentage of tardy activities (PTA) 1s only relevant if it is theoretically
possibie to schedule the workload being considered so that it obtains its total potential val-
ue. Under these conditions, the PTA metric can provide useful information about the behav-
1or of the algorithm. Statistics on mean tardiness and maximum tardiness do not consider

the relauve importance of the late activities and, therefore, are not relevant.

Other metrics which may provide useful information for evaluating the behavior of the pro-
posed algonthms include:

» average scheduling overhead—the average time required to choose the next activity to
run, and

» number of preemptions—the total number of preemptions generated (useful for estimat-
ing context swap overhead).

4.2 Workload Generation

A synthetic workload generator will be used to construct test cases for the simulation ex-
periments. By using synthetic workloads, a wide range of application environments can be
simulated. [Woodbury 86] has investigated methods of developing workloads for distribut-
ed real-time systems. Although the computational model considered by Woodbury is more
constrained than the once presented in Section 2, the work does explore the issues which
lead to stochastic behavior of distributed actvities. Other work such as {Maynard 88] will
be used to identify important characteristics of supervisory real-time applications which
should be modeled in the workloads.

Simulation experiments will be conducted while varying such factors as:
* mean number of activities,

* mean activity arnval rates,

B-14 Time-Driven Scheduling of Composite Real-Time Acrivities

* mean and standard deviation of activitv execution times,
» percentage of local versus remote execution times. and

* level of system “dynamics” (i.., how the characteristics of the workload change

across time).

Sensitivity analysis will be used to determine which workload variations have the great-
est impact on the behavior of the various algorithms. Using these results, it should be possi-
ble to characterize the types of workloads which are best handled by the proposed tech-
niques. These results will also be used to suggest techniques for tailoring the proposed al-

gorithms to more closely match certain environments.

Time-Driven Scheduling of Composite Real-Time Activities B-15

5. Research Schedule

+ 8/30/89 — Thesis proposal.

* 10/31/89 — A computational model will have been developed and shown to be suitable
for modeling composite real-time activities and their timeliness requirements. Tech-
niques for using the information available from the expanded model will have been pro-
posed.

The specification of the composite activity execution model is largely complete. More
work is needed to formalize techniques for composing nested time constraints and to
idenufy what types of processor utilization information can be made available to the

scheduler at run time.

* 12/31/89 — Specific scheduling algorithms will have been developed. A complexity
analysis of the proposed algorithms will have also been completed.
Initial investigations have been made to identify possible scheduling techniques. Al-
though tentative, this work indicates that promising techniques do exist.

e 2/28/90 — A simulator and synthetic workload generator will have been designed and
implemented.

» 5/31/90 — Simulation experiments will have been completed. The proposed scheduling
algorithms will have been evaluated and refined to the point where final analyses can
be performed.

« 8/31/90 — Data from the simulation work will have been analyzed and a thesis descnb-
ing the results of the research will have been completed.

B-16 Time-Driven Scheduling of Composite Real-Time Acuvites

6. Research Contribution

The contributions of this research can be classified into three major categories—the cre-
ation of a computaiional model for composite real-time activities, the development of sched-
uling techniques suitable for the supervisory real-time environment, and the analysis and
evaluation of scheduling techniqlics that are suitable for different types of supervisory sys-
tems.

A new computational model will be developed for describing composite real-time activi-
ties. This model will account for the physical distribution of time-constrained activities and
will specify suitable methods for composing multiple nested timeliness requirements. No ex-
isting models can adequately describe the behavior and nequ'méments of such activities. The
computational model will be designed so that it can be easily extended to consider both gen-

eral resource requirements and the concurrent execution of component stages.

New time-driven scheduling techniques will be developed. These techniques will rely on
limited information about the timeliness requirements and execution characteristics of com-
posite real-time activities to schedule activities so that as much useful work as possible is
completed by the application. Under nomal (i.e., non-overload) conditions, the algorithms
will attempt to satisfy all of the system umeliness requirements. When overloads occur, the
algorithms will be designed to shed load intelligently so that activities which are scheduled

will meet their time constraints and will contribute as much value as possible to the system.

Finally, the proposed scheduling methods will be analyzed under a wide range of loading
conditions. The performance of the new algorithms will be compared to that obtained using
existing approaches. The results of this analysis will be used to delineate the domain in
which the new techniques are applicable and to suggest methods for tailoring the algorithms

to specific types of real-time environments.

Time-Dnven Scheduling of Composite Real-Time Activities B-i7

Bibliography

[Alger 86]

[Belzile 86]

[Biyabani 88a)

[Bivabani 88b]

[Bond 8§]

[Bourne 84]

(Chang 85]

[Chang 86]

{Cheng 86]

L. S. Algerand J. H. Lala.

A Real-Time Operating Svstem for a Nuclear Power Plant Computer.

In Proceedings Real-Time Systems Symposium, pages 244-248. IEEE
Computer Society Press, December, 1986.

C. Belzile, M. Coulas, G. H. MacEwen, and G. Marquis.

RXNet: A Hard Real-Time Distributed Programming System.

In Proceedings Real-Time Systems Symposium. pages 2-13. IEEE Computer
Society Press, December. 1986.

S. R. Bivabani, J. A. Stankovic, and K. Ramamritham.

The Integration of Deadline and Criticalness in Hard Real-Time Scheduling.

In Proceedings Real-Time Svstems Symposium, pages 152-160. IEEE
Computer Society Press, December, 1988.

S. Biyabani, J. A. Stankovic, and K. Ramamritham.

The Integratior of Deadline and Criticalness Requirements in Hard Real-Time
Systems.

In Abstracts of IEEE and USENIX of the Fifth Workshop on Real-Time
Software and Operaring Systems, pages 12-17. IEEE Computer Society,
May, 1988.

R. Bond, S. Bemrich, J. Connellv, G. Pendergrass, J. Hulsey.

Missile Guidance Processor Software Development A Case Study.

In Proceedings Real-Time Svstems Symposium, pages 60-68. IEEE Computer
Society Press, December, 1988.

D. A. Bourne and M. 3. Fox.
Autonomous Manufacturing: Automating the Job-Shop.
Computer :76-86, September, 1984.

H.-Y. Chang and M. Livny.

Prionty in Distnbuted Svstemns.

In Proceedings Real-Time Systems Symposium, pages 123-130. IEEE
Computer Society Press, December, 1985.

H.-Y. Chang and M. Livny.

Distnibuted Scheduling under Deadline Constraints: a Comparison of Sender-
initiated and Receiver-initiated Approaches.

In Proceedings Real-Time Systems Symposium, pages 175-180. IEEE
Computer Society Press, December, 1986.

S. Cheng, J. A. Stankovic, and K. Ramamritham.

Dynamic Scheduling of Groups of Tasks with Precedence Constraints in
Distributed Hard Real-Time Systems.

In Proceedings Real-Time Systems Symposium, pages 166-174. 1EEE
Computer Society Press, December, 1986.

B-18

[Cheng §

~1

]

{Chu 84]

[Chu 88]

[Chung 38]

[Clark 8%]

[Conway 67]

[Coulas 87}

[Daniels 86]

[Davan 86]

[Davidson 89]

{Dertouzos 74]

Time-Driven Scheduling of Composite Real-Time Activities

S.-C. Cheng, J. A. Stankovic, and K. Ramamritham.
Scheduling Algonthms for Hard Real-Time Systems -- A Brief Survey.
Real-Time Syvstems Newslerrer 3(2):1-24, Summer. 1987,

W. W. Chu and K. K. Leung.

Task Response Time Model & Its Applications for Real-Time Distributed
Processing Svstems.

In Proceedings Real-Time Systems Symposium, pages 225-236. [EEE
Computer Society Press, December, 1984.

W. W. Chu and C. M. Sit.

Estimating Task Response Time with Contentions for Real-Time Distributed
Systemns.

In Proceedings Real-Time Svstems Symposium, pages 272-281. [EEE
Computer Society Press, December, 1988.

J.-Y. Chung and J. W. S. Liu.

Algorithms for Scheduling Periodic Jobs to Minimize Average Error.

In Proceedings Real-Time Systems Svmposium, pages 142-151. 1EEE
Computer Society Press, December, 1988.

P. K. Clark.
Scheduling Dependent Real-Time Activities.

Ph.D. Proposal, School of Computer Science, Camegie Mellon University.
October, 1988

R. W. Conway, W. L. Maxwell, and L. W. Miller.
Theory of Scheduling.
Addison-Wesley, 1967.

M. F. Coulas, G. H. Macewen, and G. Marquis.
RNet: A Hard Real-Time Distnbuted Programming System.
IEEE Transactions on Computers C-36(8):917-932, August, 1987.

D. C. Daniels and H. F. Wedde.

Real-Time Performance of a Completely Distnbuted Operating System.

In Proceedings Real-Time Systems Symposium, pages 157-163. IEEE
Computer Society Press, December, 1986.

S. Davari and S. K. Dhall.

An On Line Algorithm for Real-Time Tasks Allocation.

In Proceedings Real-Time Syvstems Symposium, pages 194-200. 1EEE
Computer Society Press, December, 1986.

S. Davidson. I. Lee, and V. Wolfe.

A Protocol for Timed Atomic Commitment.

In Proceedings of the 9th International Conference on Distributed Computing
Systems, pages 199-206. IEEE Computer Society Press. June, 1989,

M. Denouzos.
Control Robotics: The Procedural Control of Phyvsical Processes.
In Proceedings of the IFIP Congress, pages 807-813. [FIP, 1974

Time-Driven Scheduling of Composite Real-Time Activities

[Donner 86]

[Efe 89]

[Fleisch 84]

[Foruer 85]

[Gabrielian 88}

[Hong 88]

[Jahanian 87]

[Jensen 75]

{Jensen 83]

{Johnson 77]

(Kligerman 86]

B-19

M. D. Donner and D. H. Jameson.

A Real-Time Juggling Robot.

In Proceedings Real-Time Systems Symposium, pages 249-256. IEEE
Computer Society Press, December, 1986.

K. Efe and B. Groselj.

Minimizing Control Overheads in Adaptive Load Sharing.

In Proceedings of the 9th International Conference on Distributed Computing
Systems, pages 307-315. IEEE Computer Society Press, June, 1989.

B. D. Fleisch.

" Meta-Acuvities: Towards Coherent Distributed Jobs.

In Proceedings of the 4th International Conference on Distributed Computing
Systems, pages 566-578. IEEE Computer Society Press, May, 1984.

P.J. Forer.
Design and Analvsis of Distributed Real-Time Systems.
Intertext Publications, McGraw-Hill, 1985,

A. Gabnielian and M. K. Franklin.

State-Based Specification of Complex Real-Time Systems.

In Proceedings Real-Time Svstems Symposium, pages 2-11. IEEE Computer
Society Press, December, 1988.

K. S.Hong and J. Y-T. Leung.

On-Line Scheduling of Real-Time Tasks.

In Proceedings Real-Time Systems Symposium, pages 244-250. IEEE
Computer Society Press, December, 1988.

F. Jahanian and A. K.-L. Mok.
A Graph-Theoretic Approach for Timing Analysis and its Implementation.
IEEE Transactions on Compurers C-36(8):961-975, August, 1987.

E. D. Jensen.
Time-Value Functions for BMD Radar Scheduling.
Technical Report, Honevwell Systems and Research Center. June, 1975,

E. D. Jensen, C. D. Locke, and H. Tokuda.

A Time-Driven Scheduling Model for Real-Time Operating Svstems.

In Proceedings Real-Time Svstems Symposium, pages 112-122. [EEE
Computer Society Press, December, 1985.

L. A. Johnson and D. C. Montgomery.

Operations Research in Production Planning, Scheduling. and Inventory
Control.

John Wiley & Sons, 1977.

E. Kligerman and A. D. Stovenko.

Real-Time Euciid: A Language for Reliable Rea)-Time Systems.

IEEE Transactions on Software Engineering SE-12(9):941-949, September,
1986.

B-20

[Krueger 87]

[Kurose 86]

[Kurose 87]

[Lee 85]

[Lee 87]

[Lehoczky 87]

[Leinbaugh 86]

[Lin 87]

[Lin 88]

[Liu 73]

(Liu 87]

Time-Driven Scheduling of Composite Real-Time Activities

P. Krueger and M. Livny. .

The Diverse Objectives of Distributed Scheduling Policies.

In Proceedings of the 7th International Conference on Distributed Computing
Systems, pages 242-249. IEEE Computer Society Press, September, 1987.

J. F. Kurose, S. Singh, and R. Chipalkatti.

A Study of Quasi-Dynamic Load Sharing in Soft Real-Time Distributed
Computer Systems.

In Proceedings Real-Time Systems Svmposium, pages 201-208. IEEE
Computer Society Press, December, 1986.

J. F. Kurose and R. Chipalkarti.
Load Sharing in Soft Real-Time Distributed Computer Systems.
[EEE Transactions on Computers C-36(8):993-1000, August, 1987.

I. Lee and V. Gehlot.

Language Constructs for Distributed Real-Time Programming.

In Proceedings Real-Time Systems Symposium, pages 57-66. 1IEEE Computer
Society Press, December, 1985.

I. Lee and S. B. Davidson.
Adding Time to Synchronous Process Communications.
[EEE Transactions on Computers C-36(8):941-948, August, 1987.

J. P. Lehoczky, L. Sha. and J. K. Strosnider.

Enhanced Aperiodic Responsiveness in Hard Real-Time Environments.

In Proceedings Real-Time Systems Symposium, pages 261-270. IEEE
Computer Society Press, December, 1987.

D. W. Leinbaugh and M.-R. Yamini.

Guaranteed Response Times in a Distributed Hard-Real-Time Environment.

[EEE Transactions on Software Engineering SE-12(12):1139-1144,
December, 1986.

K.-J. Lin, S. Natarajan, and J. W.-S. Liu.

Imprecise Results: Utllizing Partial Computations in Real-Time Systems.

In Proceedings Real-Time Systems Symposium, pages 210-217. IEEE
Computer Society Press, December, 1987.

K.-J. Lin.

Expressing and Maintaining Timing Constraints in FLEX."

In Proceedings Real-Time Systems Symposium, pages 96-105. [EEE
Computer Society Press, December, 1988.

C. L. Liuand J. W. Layland.

Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment.

Journal of the ACM 20(1):46-61, January, 1973.

J.W.S. Liu, K.-J. Lin, S. Nataraian.

Scheduling Real-Time, Penodic Jobs Using Imprecise Results.

In Proceedings Real-Time Systems Symposium, pages 252-260. IEEE
Computer Society Press, December, 1987.

Time-Driven Scheduling of Composite Real-Time Activities B-21

[Lo 87]

[Locke 86}

[Maynard 88]

S.P.Loand V. D. Gligor.

A Comparative Analysis of Multiprocessor Scheduling Algorithms.

In Proceedings of the 7th International Conference on Distributed Computing
Systems, pages 356-363. IEEE Computer Society Press, September, 1987.

C. D. Locke.
Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Carnegie Mellon University, May, 1986.

D. P. Maynard, R. K. Clark, J. D. Northcutt, S. E. Shipman, R. B. Kegley,

P.J. Keleher, B. A. Zimmerman, and E. D. Jensen.

The Alpha Operating Svstem: An Example Command, Control, and Bartle
Management Application.

Technical Report, Archons Project, School of Computer Science, Camnegie
Mellon University, 1988.

[McNaughton 59] R. McNaughton.

Scheduling with Deadlines and Loss Functions.
Management Science 6(1):1-12, October, 1959.

[Mirchandaney 89]

[Mok 83]

[Mok 84a)

[Mok 84b]

[Northcutt 88a]

[Northcutt 88b]

R. Mirct "ndaney, D. Towsley, and J. A. Stankovic.

Adaptive Load Sharing in Heterogeneous Systems.

In Proceedings of the 9th International Conference on Distributed Computing
Systems, pages 298-306. IEEE Computer Society Press, June, 1989.

A.K.-L. Mok.

Fundamental Design Problems of Distributed Systems for the Hard-Real-
Time Environment.

PhD thesis, Massachusetts Institute of Technology, May, 1983.

A. K. Mok.

The Design of Real-Time Programming Systems Based on Process Models.

In Proceedings Real-Time Systems Symposium, pages 5-17. IEEE Computer
Society Press, December, 1984,

A. K. Mok.

The Decomposition of Real-Time System Requirements into Process Models.

In Proceedings Real-Time Systems Svmposium, pages 125-134. IEEE
Computer Society Press, December, 1984.

J. D. Northcutt and R. K. Clark.

The Alpha Operating System: Programming Model

Archons Project 88021, School of Computer Science, Camegie Mellon
University, February, 1988.

J. D. Northcutt and R. K. Clark.

The Alpha Operating System: Kernel Internals.

Archons Project 88051, School of Computer Science, Camegie Mellon
University, May, 1988.

B-22

[Olson 86]

[Ostroff 87)

[Ostroff 89]

[Peng 89]

[Rajkumar 88]

Time-Driven Scheduling of Composite Real-Time Activities

R. Olson.

Realtime Response on a Message Based Multiprocessor.

In Proceedings Real-Time Systems Symposium. pages 28-35. IEEE Computer
Society Press, December, 1986.

J. S. Ostroff and W. M. Wonham.

Modelling, Specifying, and Verifying Real-time Embedded Computer
Systems.

In Proceedings Real-Time Systems Svmposium, pages 124-132. IEEE
Computer Society Press, December, 1987.

J. S. Ostroff.

Verifying finite state real-time discrete event processes.

In Proceedings of the 9th Internarional Conference on Distributed Computing
Systems, pages 207-216. IEEE Computer Society Press, June, 1989.

D.-T. Peng and K. G. Shin.

Static Allocation of Penodic Tasks with Precedence Constraints in Distributed
Real-Time Systems.

In Proceedings of the 9th Internarional Conference on Distribured Computing
Systems, pages 190-198. IEEE Computer Society Press, June, 1989.

. R.Rajkumar, L. Sha, and J. P. Lehoczky.

Real-Time Synchronization Protocols for Multiprocessors.
In Proceedings Real-Time Systems Symgosium, pages 259-269. IEEE
Computer Society Press, December, 1988.

[Ramamritham 84]

K. Ramamritham, J. A. Stankovic.

Dynamic Task Scheduling in Distributed Hard Real-Time Systems.

In Proceedings of the 4th International Conference on Distributed Computing
Systems, pages 96-107. IEEE Computer Society Press, May, 1984.

[Ramamritham 87]

[Ruschitzka 77]

(Sahni 79]

[Saponas 86]

K. Ramamritham, J. A. Stankovic, and W. Zhao.

Meta-Level Contol in Distributed Real-Time Systems.

In Proceedings of the 7th International Conference on Distributed Computing
Svstems, pages 10-17. 1EEE Computer Society Press, September, 1987.

M. Ruschitzka and R. S. Fabry.
A Unifying Approach to Scheduling.
Communications of the ACM 20(7):469-477, July, 1977.

S. Sahni and Y. Cho.

Nearly On Line Scheduling of a Uniform Processor System with Release
Times.

SIAM Journal on Computing 8(2):275-285, May, 1979.

T. G. Saponas.

A Real-Time Distributed Processing System.

In Proceedings Real-Time Systems Svmposium, pages 36-13. IEEE Computer
Society Press, December, 1986.

Time-Driven Scheduling of Composite Real-Time Activities B-23

[Schwan 86]

[Schwan 87)

[Sha 83]

[Sha 86]

[Sprunt 88a]

{Sprunt 88b]

[Stankovic 84]

[Stankovic 85]

{Stankovic 87]

[Stone 77]

K. Schwan, W. Bo, and P. Gopinath.

A High-Performance, Object-Based Operating System for Real-Time,
Robotics Applications.

In Proceedings Real-Time Svstems Symposium, pages 147-156. IEEE
Computer Society Press, December, 1986.

K. Schwan, P. Gopinath, and W. Bo.
CHAOS - Keme! Support for Objects in the Real-Time Domain.
IEEE Transactions on Computers C-36(8):904-916, August, 1987.

L. Sha, E. D. Jensen, R. F. Rashid, and J. D. Northcutt.
Distributed Co-operating Processes and Trasactions.

 InY. Parker and J -P. Verjus (editor). Distributed Computing Svstems

Synchronization, Control, and Communication, pages 23-50. Academic
Press, 1983.

L. Sha, J. P. Lehoczky, and R. Rajkumar.

Solutions for Some Practical Problems in Prioritized Preemptive Scheduling.

In Proceedings Real-Time Systems Symposium, pages 181-191. IEEE
Computer Society Press, December, 1986.

B. Sprunt, J. Lehoczky, and L. Sha.

Exploiting Unused Periodic Time for Aperiodic Service Using the Extended
Priority Exchange Algorithm.

In Proceedings Real-Time Systems Symposium, pages 251-258. IEEE
Computer Society Press, December, 1988.

B. Sprunt.

Apenodic Task Scheduling for Hard Real-Time Systems.

Ph.D. Proposal, Department of Electrical and Computer Engineering,
Camnegie Mellon University.

November, 1988

J. A. Stankovic and L. S. Sidhu.

An Adaptive Bidding Algorithm for Processes, Clusters and Distributed
Groups.

In Proceedings of the 4th International Conference on Distributed Computing
Systems, pages 49-59. IEEE Computer Society Press, May, 1984.

J. A. Stankovic, K Ramamritham, and S. Cheng.

Evaluation of a Flexible Task Scheduling Algorithm for Distributed Hard
Real-Time Systems.

IEEE Transactions on Computers C-34(12):1130-1143, December, 19%5.

J. A. Stankovic and K. Ramamritham.

The Design of the Spring Kemel.

In Proceedings Real-Time Systems Svmposium, pages 146-157. 1EEE
Computer Society Press, December, 1987.

H. S. Stone.
Multiprocessor Scheduling with the Aid of Network Flow Algorithms.
IEEE Transactions on Software Engineering SE-3(1):85-93, January, 1977.

B-24

[Strosnider 88]

{Thurber 73]

[Tokuda 87]

[Tokuda 88]

{Trull 88]

[Wendorf 88]

[(Winston 87]

[(Woodbury 86]

[Zhao 85]

(Zhao 87}

Time-Driven Scheduling of Composite Real-Time Activities

.. K. Strosnider.

Highly Responsive Real-Time Token Rings.

PhD thesis, Department of Electrical and Computer Engineening, Camegie
Mellon University, August, 1988.

K. J. Thurber and L. A. Jack.

Time-Driven Scheduling.

In Digest of Papers COMPCON?73, pages 181-184. IEEE Computer Society
Press, February, 1973.

H. Tokuda. J. W. Wendorf, H.-Y. Wang.

Implementation of a Time-Driven Scheduler for Real-Time Operating
Systems.

In Proceedings Real-Time Systems Symposium, pages 271-280. IEEE
Computer Society Press, December, 1987.

H. Tokuda and M. Kotera.

A Real-Time Tool Set for the ARTS Kemel.

In Proceedings Real-Time Systems Symposium, pages 289-299. IEEE
Computer Society Press, December, 1988.

J. E. Trull, J. D. Northcutt, R. K. Clark, S. E. Shipman, D. P. Maynard, and

D. C. Lindsay.

An Evaluation of the Alpha Real-Time Scheduling Policies.

Archons Project 88102, School of Computer Science, Camegie Mellon
University, October, 1988.

J. W. Wendorf.

Implementation and Evaluation of a Time-Driven Scheduling Processor.

In Proceedings Real-Time Systems Symposium. pages 172-180. IEEE
Computer Society Press, December, 1988.

W. L. Winston.

Operations Research: Applications and Algorithms.
PWS Publishers, 1987.

M. H. Woodbury.

Analysis of the Execution Time of Real-Time Tasks.

In Proceedings Real-Time Systems Svmposium, pages 89-96. IEEE Computer
Society Press, December, 1986.

W. Zhao and K’ Ramamntham.

Distributed Scheduling using Bidding and Focused Addressing.

In Proceedings Real-Time Systems Symposium, pages 103-111. [EEE
Computer Society Press, December, 1985.

W. Zhao, K. Ramamritham, and J. A. Stankovic.
Preemptive Scheduling Under Time and Resource Constraints.
[EEE Transactions on Computers C-36(8):949-960, August, 1987.

Scheduling Dependent
Real-Time Activities

Raymond K. Clark

Schoo! of Computer Science
Carnegie Mellon University

February 6, 1990

Scheduling Dependent Real-Time Act:vities

Table of Contents

1. Introduction

1.1.

1.2.
1.3.
1.4.

1.5.

Problem Definition

1.1.1. Dependencies

1.1.2. Real-Time Systems

Simple and Complex Schedulers
Scheduling Example
Motivation for the Model

1.4.1. Accrued Value

1.4.2. Time-Value Functions
Technical Approach

1.5.1. Define Model

1.5.2. Devise Algorithms

1.5.3. Prove Properties Analytically
1.5.4. Simulate Algorithm

2. The Scheduling Model

2.1.

2.2.
23

Informal Model and Rationale
2.1.1. Applications, Activities, and Phases
2.1.2. Shared Resources
2.1.3. Phase Preemption
2.1.4. Phase Abortion
2.15. Events
2.1.6. Histories
2.1.7. Scheduling Automata
2.1.7.1. General Structure
2.1.7.2. Specific Scheduling Automata
Assumptions and Restrictions of Model

. Formal Model

2.3.1. Notation and Definitions

2.3.2. The General Scheduling Automaton Framework (GSAF)

2.3.2.1. Applications and Activities

2.3.2.2. Events and Histones

2.3.2.3. Operations

23.2.4. Computational Phases of Activities
2.3.2.5. Shared Resources

23.2.6. Phase Preemption and Resumption
23.2.7. Event Terminology and Notation
2.3.2.8. Definitions and Properties of Histories
2.3.2.9. Automaton State Components

23.2.10. Operations Accepted by GSAF with Preconditions and Postconditions

2.3.2.11. Active Phase Selection
2.33. Notes

2.3.3.1. Manifestation of Assumptions and Restrictions

2.3.3.2. Manifestation of Interrupts

[N I I T TR

00000

0o

»
BNt

AN LB W= OW

S

OOO0O0O0O0000000

o s o oo s o fo o
IJcL S oo™

C~ii Scheduling Dependent Real-Time Activities

2.3.3.3. Atomic Nature of 'Request-Phase’ Events
2.4. Observations on the Model

3. The DASA Algorithm

3.1. Dependent Activity Scheduling Algorithm
3.1.1. Rationale for Heuristics
3.1.2. The DASA Algorithm
3.1.3. The DASA Algorithm: Dependency Scheduling
3.1.4. The DASA Algorithm: Deadlock Resolution
3.2. Formal Definition of DASA
3.2.1. The Formal Definition
3.2.1.1. DASA Automaton State Components
3.2.1.2. Operations Accepted by DASA Automaton
3.2.1.3. ’'SelectPhase’ Function for DASA Automaton
3.2.2. Observations on the Definition
3.2.2.1. Manifestation of Desirable Properties
3.2.2.2. Nondeterminism in Definition
3.2.2.3. Explicit Appearance of Time
3.3. Scheduling Example Revisited

4. Analytic Results

4.1. Requirements for Scheduling Algorithms
4.2. Strategy for Demonstrating Requirement Satisfaction
4.3. Proofs of Properties
4.3.1. Algorithm Correctness
4.3.1.1. Proof: Selected Phases May Execute Immediately
43.2. Algorithm Value
4.3.2.1. LBESA Scheduling Automaton
4.3.2.2. DASA/ND Scheduling Automaton
43.2.3. Proof: If No Overloads, ¢c{DASA} and LBESA Are Equivalent
4.3.2.4. Proof: With Overloads, DASA May Exceed LBESA
4.33. Algorithm Tractability
4.3.3.1. Procedural Version of DASA
4.3.3.2. Proof: Procedural Version of DASA Is Polynomial in Space and Time
4.4. Notes on Algorithm
4.4.1. Unbounded Value Density Growth
4.4.2. Idle Intervals During Overload
4.43. Cleverness and System Dynamics

5. Simulation Results

5.1. Simulator Design and Implementation
5.1.1. Requirements
5.1.2. Design
5.1.2.1. Activities and the Activity Generator
5.1.2.2. Integrated Scheduler
5.1.3. Implementation
5.1.3.1. Approach: Build from Scratch or Adapt an Existing Simulator
5.1.3.2. Source of DASA Implementation
5.1.3.3. Single Scheduler for Simulation
5.1.3.4, Simulator Display Messages
5.1.3.5. Maodifications
5.2. Evaluation of DASA Decisions
5.2.1. Methods of Evaluation
5.2.1.1. Execute Existing Applications
5.2.1.2. Modifying or Reimplementing Existing Applications
5.2.1.3. Modeling Existing Applications

C-38
C-38
C-41
C-41

Pt et pmt gt S s s et gt
leuuu“nuuu
h n Ul b ettt ps

Scheduling Dependent Real-Time Activities

5.2.1.4. Simulating the Execution of a Parameterized Application
5.2.2. Workload Selection
5.2.3. Examination of DASA Behavior
5.2.3.1. Workload Parameiers and Metrics
5.2.3.2. Scheduler Performance Analysis
5.3. Interpreting Simulation Results for Specific Applications
53.1. Some Interesting Applications
5.3.1.1. Telephone Switching
53.1.2. Process Control: A Steel Mill

6. Related Work and Current Practice

6.1. Priority-Based Scheduling
6.2. Deadline-Based Scheduling
6.3. Other Related Work

Appendix A. The General Scheduling Automaton Framework
Appendix B. Derivation of DASA/ND Scheduling Automaton

-~
!

1]
bt P d et et et st

&

W Y9
QO N ~1 21\ Wn

Q0Qa00n0

[
[
W
o

C-190

C-iy

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 3-1:
Figure 3-2:
Figure 3-3:

Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:

Scheduling Dependent Real-Time Activities

List of Figures

Examples of Time-Value Functions

Execution Profiles for Priority and Deadline Schedulers

Format of Scheduler Events

An Observer Monitoring the Scheduler Interface

Scheduling Automaton Structure

Operation Types and Originators

State Components of General Scheduling Automaton Framework
Operations Accepted by General Scheduling Automaton
Organizations of Scheduling Functions

Simplified Procedural Definition of DASA Scheduling Algorithm
State Components of DASA Scheduling Automaton
’RequestPhase’ Operation Accepted by DASA Scheduling
Automaton

Other Phase Operations Accepted by DASA Scheduling Automaton
Resource Operations Accepted by DASA Scheduling Automaton
Functional Form of DASA Algorithm

Execution Profiles for DASA Scheduler with and without Aborts
State Components of LBESA Scheduling Automaton

Operations Accepted by LBESA Scheduling Automaton
Functional Form of LBESA Algorithm

State Components of DASA/ND Scheduling Automaton
Operations Accepted by DASA/ND Scheduling Automaton
Functional Form of DASA/ND Algorithm

Histories Accepted by LBESA Beginning With E ‘E, E,
Procedural Definition of DASA Scheduling Algorithm

Logical Structure of Simulator

Average Scheduler Performance with No Shared Resources
Average Scheduler Performance with One Shared Resource
Average Scheduler Performance with Five Shared Resources
Scheduler Performance Range with No Shared Resources
Scheduler Performance Range with One Shared Resource
Scheduler Performance Range with Five Shared Resources

C-11
C-20
C-21
C.22
C-27
C.31
C-34
C-39
C-43
C-45
C-47

C-48
C-49
C-54
C-60
C-65
C-66
C-67
C-69
C-70
C-11
C-105
C-107
C-119
C-130
C-131
C-132
C-135
C-136
C-137

Scheduling Dependen: Real-Time Activities C-1

Chapter 1

Introduction

This is a draft of a doctoral dissertation. The work presented is
continuing. The material contained in this draft will be edited, and
possibly augmented, to produce the final version of the dissertation.

Real-ume applications are typically composed of a number of cooperating activities, each contributing
toward the overall goals of the application. The physical system being controlled dictates that these
activities must execute certain computations within specific ume intervals. For instance. safe operating
practices may dictate that an activity scheduled in response to an alarm condition must complete execution
within several milliseconds of the receipt of the alarm signal.

Real-time applicatons usually contain more activities that must be executed than there are processors on
which to execute them. Consequently, several activities must share a single processor, and the question of
how to schedule the activities for any specific processor — that is, deciding which acuvity should be run
next op the processor — must be answered. Necessarily, the prime concem in making scheduling
decisions in real-time systems is satisfying the timing constraints piaced on each individual actvity,
thereby satisfying the timing constraints placed on the entire application.

One factor significantly complicates the scheduling problem: the activities to be scheduled are not
independent. Rather, the activities share data; execute mutually exclusive pieces of code, called critical
sections [Peterson 85]; and send signals to one another. All of these interactions can be modeled as
contention for resources that may not be shared. That is, once an activity has gained access to a shared
resource, then no other activity can gain access to it until the first activity has released it. Any activity that
is waiting for access to a resource currently held by another activity is said to depend on that activity, and a
dependency relationship is said to exist between them. Dependency relationships are able to encompass
both precedence constraints, which express acceptable execution orderings of activites, and resource
conflicts, which result from multiple concurrent requests for shared resources.

No existing scheduling algorithm solves the problem of scheduling a number of activides with dynamic
dependency relationships in a way that is suitable for real-time systems. This thesis addresses that
problem. The resulting work provides an effecuve scheduling algorithm, a formal model to facilitate the
analytic proof of properties of that algonthm, and simulation results that demonstrate the utility of the
algonthm for real-ume applications.

c-2 Scheduling Dependent Real-Time Activities
1.1. Problem Definition

A real-time system consists of a set of cooperating, sequential acrivities. These activities may be Mach
threads [Mach 86}, Alpha threads [Northcutt 87], UNIX processes [Ritchie 74], or any other abstraction
known to the operating system that embodies action in a computer.

These activities interact by means of a set of shared resources. Exampies of resources are: data objects,
critical code sections, and signals. Any given resource may be used by only one activity at a ume. If
acuvity A, is accessing a resource when activity A, requests access to the same resource, 4, must be denied
access until A, has released the resource. Here, activity A, depends on activity A, since it cannot resume
its execution until A; has released the resource.

We assume that activities can be preempted at any time. That is, at any time, the activity that is currently
being executed by the processor may be suspended. Later, it may either be resumed or aborted, or it may
never be executed again. If the activity is resumed. it will continue execution at the point at which it was
interrupted. If it is aborted, the resources it holds will be returned to a consistent state and released.

Of course, the preemption of an executing activity, which is a manipulation of a computing abstraction,
does not preempt the physical process that the actvity is momtoring and controlling. Regardless of the
execution state of the comesponding computer acuvity, the physical process continues to exist and,
possibly, to change .

We also assume that scheduling decisions must be performed on-line — that is, they cannot be
determined in advance due to the dynamic nature of the sysiems of interest. For instance. while the
scheduler knows about the current activities, it does not know Lhéir resource requirements (that is, which
resources will be needed. for how long, and in what order)2. Furthermore, new activities may be created
without waming — perhaps in response to external events. Since the set of activities to be scheduled may
change over time, as may their dependency relationships, the scheduler must examine the activities to be
scheduled in an on-line fashion.

[Ullman 75) demonstrated that the general preemptive scheduling problem is NP-complete, implying that
tractable scheduling algonthms in evean fairly simple systems cannot be optimal in all cases. Instead, they
are designed to extubit properties that seem likely to result in desirable behavior. As will be shown, our
algonthm possesses a number of promising properties with respect to real-time systems.

'Furthermore, the concept of an aborted computation 1s somewhat different in a real-ume system than it 1s 1n other applications. In
any setung. aborting an activity should result 1n remurming the data items modified by that acuvity to a consistent state. However, ina
real-ume system not all of the acuons of the acuvity are nullified by restonng consistent data values. Changes made in the physical
world by means of computer—contolled actuators may have to be nuilified. Opening a valve, for example. may have had an effect in
the physical world that cannot be undone by simply closing the valve once agann. In such cases, further compensatory actuons may be
required.

?For specific, restncted applicauons, it may be possibie to know some or all of tus informauon in advance: but. 1 general, it s
impossible.

Scheduling Dependernt Real-Time Activities C-3
1.1.1. Dependencies

As defined earlier. activity A, depends on activity A, if actvity A, cannot resume execuuon unal A, has
taken some action. For example:

1. several activities access a shared region of memory and access is arbitrated by a lock: when
one acuvity holds the lock when another acuvity requests it, the requesting activity is blocked
and depends on the first;

[28]

. similarly, locks may be used to protect devices and sections of code; this allows the
implementation of critical sections, for instance: in this case, whenever one activity is blocked
while another activity is executing a cniical section, the blocked activity depends on the
executing activity;

(VS)

. precedence constraints, which impose partial orderings on the execution of activities. may be
implemented by means of signals between activites: ap activity that must complete a
computation before another acuvity can begin, for instance. signals the second activity when
it is done; the signal indicates that the second activity can resume execution; notice that the
second activity depends on the first while it is blocked waiting on the arrival of the signal.

These dependencies clearly have an effect on scheduling. A number of activities may be blocked due to
dependencies on other actvities, but their resource needs are real and should be taken into account insofar
as possible by the scheduler. However, in a typical operating system, if an actvity is blocked, its
requirements are not considered by the scheduler. As a result, important activities may be ignored by the
scheduler. In particular, in a real-time system, activities that bave pressing time constraints may be ignored
because they are blocked due to dependency relationships.

A classic example of this type of behavior exists in the context of static prionty scheduling
systems [Peterson 85]. The most important activities are assigned high priorities, while less important
activities are assigned low priorities. Suppose that a low priority activity is executing a critical section
when a new event makes a medium priority activity ready to run. A priority scheduler would preempt the
low priority activity immediately, while it was sall executing its cnitical code. If a high priority activity
subsequently became ready to run, it would preemp! the medium priority activity. Unfortunately, if the
high priority activity were to attempt to execute a critical code section, it would be blocked and the medium
prionity activity would resume execution regardless of the relative urgency of their respective time
constraints.

Another example, similar to the one just presented, will be examined more closely in a later section of
this thesis.

A model that keeps track of blocked activites and the reason that each activity was suspended can cover
all of the scenarios that have been mentioned so far. Specifically, acuvities that share data can coordinate

INote that there is no inherent correlation between an activity's pnonty and the urgency of its time constraint This 15 a key
problem with stauc priority schedulers.

“Some sysiems prevent preempuon at these umes. while many do not [KB 84, Bach 86]. But even systems that prevent preemption
suffer from other problems— for example, they have longer, potenually unbounded, response imes, and they lose informauon by
descnbing an acuvity by a single number, its pnonty. This latter point will be elaborated in later sections of this document.

C4 Scheduling Dependent Real-Time Activities

access to that data by means of a lock manager. If a lock request is granted. then the data may be accessed.
If a lock cannot be granted immediately, the requesting activity is blocked and becomes dependent on the
acuvity currently holding the lock.

In the case of critical sections, permission to execute a critical section can be arbitrated by semaphores.
When an activity executes a P operation o request permission to execute a cnucal secuon, the acuvity
either begins executing the critcal section immediately, or it is blocked because another activity is already
executing that critical section. In the latter case, the blocked activity is dependent on the completion of the
activity executing its critical section. Similar dependencies also result from more general uses of

semaphores.

Finally, signals between actvites can often be implemented using a semaphore. The signal onginator
issues a V operation, enabling the signal receiver to continue execution when it does a P operation to detect
whether the signal has been sent vet If the V precedes the P, then the signal was sent before the receiver
looked for it, and the receiver is allowed to continue. Otherwise, the sigial receiver must wait unul the
signaller has issued the signal. At that ume, the receiver is blocked and its further execution depends on the
continued progress of the activity that will send the signal.

In each case, the scheduler can acquire the information it needs to construct a complete picture of the
dependencies in the svstem. Conversely, since this information is available, this thesis applies to a wide

range of applications and systems in which these types of dependencies occur.

1.1.2. Real-Time Systems

Despite common definitions that refer to artifacts such as interruptability in the kemel., interrupt latency,
and context swap times {Rauch-Hindin 87], real-time systems are fundamentally concemed with carrying
out activities according to timing constraints imposed by an application — that ts, the external world. The
uming constraints imposed by the external world imply that the time at which an activity is performed 1s
just as impontant as the correctness of the computation being performed. Note that a faster computer that
executes activities in an unfortunate order might be less "real-ume” than a slower computer thal executes

the acuvities in a more advantageous order.

There are several classes of real-time sy:'2ms [Bennctt 88]. Low-level real-time syvstems are typified by
loop conurol applications, where computers interrogate sensors, perform a fixed set of calculauons on the
sampled data, along with other state information, and control a group of actuators based on the results of
the calculations. The activities that impiement these applications are often executed periodically —
someumes because the sensors produce data periodically (e.g., radar) and sometimes because the control
mod-=ls on which the systems are based require periodicity.

Often, several of these low-level real-time systems are monitored and controlled by a higher level
real-ime system, called a supervisory control system. For supervisory control systerns, the application

events that trigger acuvity are typically not periodic; rather, they occur stochastically — for example, in

Scheduling Dependent Real-Time Activities C-5

response to an alarm condition or to indicate the completion of a low-level sequence of operations. These
events represent significant changes in the physical world and must be handled by the supervisory control
system in a umely manner. So. just like low-level real-time systems. supervisory control systems have
physically derived time constraints; and. in fact, meeting these tme constraints is just as critical as it is in

low-level systems.

In addition to monitoring and directing the low-level real-ume systems, supervisory control systems
perform strategic planmng functions — that is, they determine how to coordinate the actions of the
lower-level systems to meet the application’s objectives — and they receive directon from higher level
management information systems. Typically, this information would include the specific objectives for the
supervisory control application (for example. to produce the goods that fill a given set of orders during the
current shift). Although supervisory control activitics cooperate to provide their services, they stll contend
for access to shared system and application resources.

Unfortunately, the policies that are prevalent in non-real-time systems to resolve such contention are
nappropriate, and may in fact be counterproductive, in real-ime systems. For instance, in ume-sharing
systems, fairness is desired and is obtained by, among other things, using FIFO gueue disciplines and
round-robin schedulers [Peterson 85]. This approach reflects the belief that all acdvites are equallv
significant. However, in real-time systems thus is clearly not the case — some activities, and hence, some
time constraints, are decidedly more significant than others. In fact, while failing to sausfy some ume
constraints may have no adverse effect on the physical process or platform being controlled, failing to
satisfy others can have catastrophic effects. A few examples will illustrate the varying significance that
may be attached to meeting specific time constraints.

First of all, consider a real-time supervisory control svstem in a process control setting — a furnace and a
continuous caster in a steel mill. Molten steel of a specific chemistry is created from iron, scrap. and
additional materials in the furnace. When the metal in the fumace is ready to be converted into slabs of
solid steel. the molten metal s poured into a large ladle, transported to the caster, poured into the caster,
and cast into a long, continuous slab that is subsequenty cut into individual slabs of appropriate length.
When the metal is originally poured into the caster’s "mold,” it is liquid. It cools in the "mold” and 1s solid
when it emerges, ready to be cut. Several low-level real-time systems directly control the furnace, the
caster, and several related pieces of equipment. These systems are monitored, controlled and coordinated
by a supervisory control system.

In this setting, there are several types of supervisory control ume constraints that can be examined.
Roughly speaking, they fall into three classes: (a) time constraints that, if missed, will result in potental
loss of life and property (e.g., due to liquid steel spilling over the area); (b) time constraints imposed by the
physical world that have financial penalues if they are missed (e.g., losing quality control statistics for
products, resulting in potentially unusablc products); and (c) time constraints that are not physically based
and result only in inconvenience if they are missed (e.g., operator display requests).

Military systems also provide examples of the difference in importance between various time constraints.

Cc-6 Scheduling Dependent Real-Time Activities

For a fighter plane, for instance, the most importance activities are those that serve to keep the plane in the
air and the pilot alive; the activities that control weapons are less important, although, obviously, they are
sull of great concem. On the other hand. aboard a ship, which will float stably without constant control, the
activities in charge of the defensive weapons systems may well be more important than those that steer the
ship.

The preceding examples demonstrate that there are a number of time constraints that an application
declares and that there are significant differences in kind among the activities expressing those time
constraints. It makes sense to talk about failing to satisfy time constraints in a dynamic system because
transient, and even permanent, increases in resource demands are possible. Some difficult questions, then,
involve detecting these demand peaks and deciding which time constraints should be satisfied and which
should not.

One final, critical observation shouid be made. Notice in the examples above that, although each activity
was operating under a time constraint, there was a classification of its relative importance (compared to
other activities) that was independent of the time constraint. That is, there was no inherent correlation
between the activity's urgency, which was captured by its time coastraint, and its importance. A criacally
important activity may require little computation time and may have a very lcose time constraint (relatively
speaking). In that case, it is certainly not an urgent activity, although it is an important activity.
Conversely, a relatively unimportant activity may have a time constraint that is very tight. Therefore, it is
fairly urgent even though it is not very important in the global scheme of things. Many schedulers are able
to deal with an activity’s importance (e.g.. priority schedulers {Peterson 85]) or its urgency (e.g., deadline
schedulers [Conway 67]), but few attempt to distinguish between these two attributes or to use all of the
information that is captured in both of them.

1.2, Simple and Complex Schedulers

Two distinct approaches may be taken in designing and constructing a scheduler. On one hand, a
minimal scheduler can be provided The scheduling may be list-driven, like the rate group schedulers used
by cyclic executives (GD 80, Stadick 83, MacLaren 80]; or it may employ a very simple algorithm, like a
priority scheduler. Such approaches impose a low system overbead. This may be entirely appropriate
when the goal is 10 maximize system throughput or to support a simple application structure so that
properties (such as worst case load behavior) can be demonstrated, but it is not obviously the best approach
for systems where the goal is to satisfy as many time constraints as possible or obtain the highest
application-specified value as possible. Furthermore, minimal schedulers may have limited applicability,
as evidenced by the fact that they are already stretched 1o the limit in large, dynamic real-time applications.

Alternatively, a complex scheduler may be used. In this case, application activities tell the scheduler their
individual needs and the scheduler attempts to satisfy them, making decisions based on global information
that the application does not possess. The more complete and accurate the information, the better the job

Scheduling Dependent Real-Time Activities c-7

that the scheduler can do in managing resources’; and processor cycles, of course, are one particularly
important resource.

Thus thesis explores the latter philosophy by allowing the scheduler to use more information than usual in
order to do a better job of scheduling for real-time systems. There are two major points that must be
demoastrated to verify the quality of the scheduling: first of all, the individual scheduling decisions must be
good (i.e.. show that the "right” activity was selected for execution); and secondly, the performance penalty
paid for employing a more expensive scheduling algorithm must be more than offset by improved
scheduling from the point of view of the application (i.e., show that the scheduler can make better use of
the resources required to make the scheduling decisions than the application can). Of course, not every
application requires a complex scheduler, but some do, and tnis thesis explores the use of compiex
schedulers to support those applications.

The previous discussion has focused on time constraints without elaborating on the precise definition of
these constraints. The term has deliberately been used to capture the general notion that real-time
computations must satisfy certain timing requirements. We now introduce a formal method to describe
time constraints and introduce some additional terminology. Each activity in a real-time application is
composed of a sequence of disjoint computational phases, also known simply as phases. The application
as a whole makes progress when its component activities make progress; and each activity makes progress
by completing its computational phases. Therefore, the completion of a computational phase marks
measurable progress for the application, and this progress is expressed in terms of value units. Associated
with each phase, then, is a ime-value function [Jensen 75] that specifies that phase’s time constraint — it
indicates the value acquired by the application for completing the phase as a function of time.

The shape of the time-value function is arbitrary, and Figure 1-1 shows a fcw examples. Figure 1-1(a)
shows a step function of height v. In this case, completing the computational phase by time ¢, yields value
v, while completing it at any later time yields oo value. Figure 1-1(b) shows a situation where the cutoff in
value is not as sharp. Prior to time 7, the value associated with completing the computation is again v.
However, following that time, the value decrcases smootlly until, once again, a point is reached after
which no value is gained by completing the phase. Finally, Figure 1-1(c) corresponds to a phase that must
complete within a certain interval in order to acquire a non-zero value for the applicaton. Although sharp
transitions are shown at both ¢, and 1_,, more gradual transitions — such as a parabola — could also be
used. Finally, the times at which there are sharp changes in time-value functions are known as critical
times. Times 1.1, 1_,, and r_, are all criical umes.

The simple step function shown in Figure 1-1(a) illusirates several key ideas and allows the introduction
of some important terminology. First of all. time ¢, is referred to as a deadline since it represents the last
instant at which the phase can complete and still make a non-trivial contribution to the accrued value for

Slmprovcd scheduling can also be obtained by devoting more resources to analyzing a fixed amount of scheduling informauon
Although the main thrust of this thesis is to study the use of more informauon than usual, the algonthm to be stdied also requures
significant resources for the scheduler. The resulung implications will be discussed later in the document

C-8 Scheduling Dependent Real-Time Activities

Value Value
v
0 , 0 _
€ Time £ Time
11 -
(a) (b)
Value
v 4
O -
t t Time

Figure 1-1: Examples of Time-Value Functions

the application. Valuc v is called the importance of the phase. If every ume-value function were a
step-function and all of the step functions had the same height (importance). then each phase that was
completed would make an identical contribution to the progress of the application and an appropnate
scheduling strategy would complete as many phases as possible prior to their respective deadlines. If,
however, different phases were to have different importances, then they would make different contributions
to the value accrued by the application and the scheduling strategy that would maximize that value would
be different. Considered over the lifetime of an application, a greater accrued value represents a more
successful appplication.

If resource demands, including those for processor cycles, are sufficiendy low, then all acuviues can be
scheduled, thereby accruing a large value for the application. However, in the event that it is impossible to
satsfy all of the activities' resource demands, an overload exists. In this case, some subset of the activities
will meet their time constraints, while others will not, resulting in a lower accrued value for the application,
[n an overload siwation, the scheduler should maximi~e the value accrued by the application.

With an understanding of the simple step function ume-value function and the vocabulary introduced
above, consider again the notion that a scheduler can do a more effective job when it has more completc or
better quality information on which to base decisions. Consider the algorithms a scheduler can use given
specific types of inforration (unless otherwise noted, these are all discussed in [Conway 67]. [Janson
85] or [Peterson 85]):

Scheduling Dependent Real-Time Activities c-9

e no information — there is no way to distinguish activities so round-robin or random
scheduling of ready activines would be appropniate;

e relative importance of activities — prionty scheduling of ready activiues: ttus algorithm would
always run the highest priority (most important) ready activity;

o deadline and required computation time of activiies — deadline scheduling, where he ready
activity with the nearest deadline 1s always selected to run. or slack-time scheduling. where the
ready activity that has the least slack-time® is always selected to run, would be optimal
algorithms with this information;

» time-value functions {Jensen 75], which capture importance and tming requirements -— more
complex schemes such as best-effort scheduling [Locke 86] of ready acuvities can be
employed; Locke showed that under tus model, this approach can be more effective than those
listed above.

This thesis will explore the consequences of allowing the scheduler to have access to not oanly the
activiies’ time-value functions, but aiso to information describing the dependency relationships existing
between activides. This should enable the svstem to take into account the time constraints of blocked
activities, allowing a better ordening of activities. along with the earlier detection and better resolution of
overloads.

Notice that the dependency information that is to be used by the proposed scheduling algonithm is not
very exotic or difficult to cbtain in many cascs. Often, the operaung system or a system utlity, such as a
lock manager, holds key pieces of this information. Whenever an activity is unable to gain immediate
access to a shared resource, it is typically blocked. At that point, the system is capable of noting which
resource is being accessed, as well as the dentities of the acuvities holding and requesting the resource. In
other cases, straightforward extensions to the operatng system interface woul' rrovide the necessary
dependency information for the scheduler’s use. As a result, if the algonthm can be demonstrated to have

sufficient merit, an implementation would not seem to be unduly difficult.

1.3. Scheduling Example

In order to demonstrate some of the pomnts that have been made earlier and to illustrate the type of
problem that is to be addressed by this thesis. consider an cxample.

Assume that there are only three activites. each consisting of only a single phase. Designate these phases
P, Py and p_. Phase p, has a relauvely low importance, requires four ume units of execution time to
complete, and must complete execution within 15 time units of its imuation. It requires the use of shared
resource r. It requests access to r after 1t has executed for one time unit, and releases 7 afier it has executed
for a total of three time units.

Pbase p, has a medium importance, requires three time untts of execution ime, and must complete within
four time units of its initiation. It also uses shared resource r. Like p . it requests r after it has executed for
one time unit and releases it after it has exccuted for a total of threc ime units.

¢slack-time = deadline - present time - required computation time.

C-10 Scheduling Dependent Real-Time Activities

Phase p_ has a relatively high importance, requires four time units to complete executon. and must
complete within ten time units of its imtiation. It does not access shared resource r.

All of these phases are initiated as a result of extemnal events. Suppose that the event that initiates phase
p, occurs at ime ¢ = 0, and the event that initiates both p, and p_ occurs two time units later. This implies
that the deadline for completing phase p, is ume ¢ = 15, the deadline for completung phase p, is at ume t =
6, and the deadline for completing phase p_is ime ¢ = 12.

If these phases are to be scheduled using a prionity scheduler, then it seems clear that their importance to
the application should act as an indication of the r priority. Therefore, if Pri() is a function that returns the
priornity of a phase ...

Pri(p,) < Pri(pb) <Prip.)

Also notice that this is a situauon where urgency, when defined as the neamess of a deadline, is not the

same as importance. To see this, let DL() represent a function that returns the deadline of a phase. Then

DL(p,) < DL(p,) < DL(p,)

A prnionty scheduler will always execute the ready phase with the highest priority. A deadline scheduler
will always execute the ready phase with the nearest deadline. Whenever a phase is waiting on a resource,
itis blocked and so is not ready. Applying these rules to phases p,. p,. and p_ yields the execution profiles
shown in Figure 1-2. The x-axis represents time, while the y-axis indicates which phase is executing at any
given ume. Significant events in the executions of the phases are indicated. Notice that neither the priority
scheduler or the deadline scheduler could meet all three deadlines. Both failed to allow phase p, to meet its
deadline. A more sophisticated version of the prnority scheduler, for example one of the pronty
inhentance schedulers mentioned earlier, will not solve the problem either. The algonithms to be
investigated in this thesis will solve this problem.

1.4. Motivation for the Model

Much of the model of supervisory control systems that has been presented is straightforward and is
largely based on current practices and systems. Nonetheless, a few points — most notably the use of
application-specific values within the system — may not be obvious or typical of existing implementations.
These issues will be further explained in the following sections.

1.4.1. Accrued Value

Evaluating a scheduling algorithm by determinung the total value it accrues while executing an

application is unusual. However, not only is it intuitively appealing, it is also appropnate in many cases.

The intuitive appeal lies in the view that accumulating value represents making progress. As cach
acuvity cemgletes designated portions of its execution, value accrues to indicate the uulity to the

application of that particular computauon.

Scheduling Dependent Real-Time Activities C-11

N
Running B
Phase B2) . \ -
. . : Deadline Scheduler
ca ——o _ -—
% E E .
H : . H HE t
I3.3 o3 I3 .
2 7
ohese” i _ — Static Priority Scheduler
f . ' .
! ' ;
ra ———o — —
; I
L} ' l + v !
- 1 '3 1) Ll - t
3.3 rg ri,g rl
g reguest r

-
. = grant
. = re.ease I

Figure 1-2: Execution Profiles for Priority and Deadline Schedulers

While this might sound plausible as a metric, there remains the question of whether values can be
assigned meaningfully to computational phases of an activity. In many instances, there is strong reason to
believe that this is the case.

The class of process control applications provides one example of the applicability of i< approach.
Typically, one or more processes are being controlled or one or more products are being manufactured
under the supervision of a single supervisory control computer system. Since the goods being produced
have a monetary value, 1t is possible to assign values to particular activities based on the commercial worth
of the goods being produced by each activity. Consequently, the use of a scheduler that maximizes the
amount of value accrued for the application is actually maximizing the commercial value of the goods
being produced. This seems entirely reasonable. (Conversely, if it seemed more natural, the notion of
monetary loss or penalty could be used instead of the monetary value or profit outlincd. The underlying
notion is essentially the same in either case.)’

Dunng an overload, when there are insufficient resources to meet the overall demand, some activities

"The use of monctary measures to detzrmine schedules has long becn used n the operations rescarch and job shop scheduling
communities. The model used in this work differs somewhat from ther model. Thus is dealt wats 'n some depth in Chapler 6.
Briefly, the typical job shop model assumes that the set of orders currently known will all be filled at some point in ume. That is, all
acuvites will eventually be run. This “ocs not take into account the fact that in real-ime compuler sysiems, some activities are of
only transient value because they are run frequentiy or because they must be run in a timely fashion or not at all due 1o the quahty of
the information or the physical time constraints of the applicauon.

c-12 Scheduling Dependent Real-Time Activities

may not be scheduled. It would be perfectly reasonable to select which of two acuviues should be run
based on their relative values. In fact, it would be possible that during an overload involving three or more
activitigs, the acuvity with the highest individual value would not be scheduled. Rather, two or more
acuvities with lower individual values, but with a higher combined value, could be scheduled.

This overload behavior should be contrasted with that of other scheduling policies. For instance, a
prionty scheduler would always execute the activity with the highest individual value at any given time
{assuming that the priorities assigned to activities corresponded to the commercial worth of the acuvity as
described previously). In the case just outlined, this would result in a lower total value than the method that
maximized value.

A stee] mill applicaton can ilustrate this point, while demonstrating the dynamic nature of the
assignment of values to tasks. The steel mill under consideration has a furnace and caster that combuine to
transform raw matenials into slabs of finished steel of specified chemistry. There are two functions that are
particularly interesting: chemistry control, which controls the chemical composition of the steel being
produced. and quality control tracking, which follows the progress of the steel through various stations in
the mill including the caster and associates a specific chemistry with each foot of every steel slab produced

by the mill. A single supervisory control computer monitors and controls both of these functions.

Dunng overloads, the supervisory computer may have to decide which function should be run. Most
often, the value associated with the quality control activity should be higher than that associated with the
chemistry control actvity. This is because it is important to know what is in each steel slab that is sold. In
fact, since many customers will not buy a slab without detailed knowledge of its chemistry, the profit that
would be realized from the slab is at stake if the tracking activity does not execute in time. On the other
hand, if the chemistry control activity is not executed, the chemistry of the steel may be different from what
was intended. This 1s acceptable if the resultant chemistry is one that can be sold or can be further
processed to obtain such a chemistry. Notce that the chemistry — even if it is not the chemistry that was
onginally intended — is known and can be tracked by the quality control activity.

The dynamic nature of value assignments is shown by the fact that the above generalization does not hold
in every case. When a particularly rare chemistry is desired, it 1s sometimes the case that the steel cannot
be sold if the chemistry is not exacty right, therefore placing the profit for the heat in jeopardy if the
chemistiy control activity is not run. [t is possible that the profit involved, especially for a specialty steel,
will outweigh the profit that will result from tracking steel slabs of more typical chemistnes through the
rest of the mill. Since these decisions vary with each heat (mix) of steel, values must be assigned to the

chemistry control and quality control tracking activities dynamically to correspond to each heat.

Miluary defense systems are a second class of applications that seem to allow values to be assigned to
component activities meamungfully and would benefit by using a scheduler that maxamized accrued value
for the applicauion. In this case, the value accrued for an activity controlling a defense system would be
denved from the number of lives or the number of other military assets that can be saved. As unsettling as
it is to consider, it scems wise to employ a scheduler that maximizes the number of lives or assets that are
successfully defended.

Scheduling Dependent Real-Time Activities c-13

These examples make use of the fact that there is a common "currency” in which values can be expressed
naturally — money in process control situations and lives or other military assets in combat systems. In
such situations, it is relatively straightforward to assign values to various activities®. Other applications
may require that values take into account a number of different factors — money, lives, operator
satisfacuon. and so forth — and appropriate weightings of these factors will have to be developed to
produce acceptable and meaningful actvity values.

Of course, the real test of the utlity of this approach will come in the future when scheduling algorithms
that maximize application-defined value are employed in production systems — or, perhaps, prototype
versions of production systems. At that ime, the performance of these systems can be compared directly to
alternative approaches. Pending the outcome of such tests, it does seem to be useful to explore the notion
of maximizing the value for an applicaton.

1.4.2. Time-Value Functions

As shown in the above discussion, the notion of assigning values to application activities and scheduling
activities to maximize the accrued value for the entire application has merit in a wide range of applicatons.
These assigned values reflect the relative importances of the activities that they represent.

Since the systems under consideration for this work are real-ime systems, the value associated with the
completion of a computation vanes as a function of time. For exampie, in an automated assembly
application, the value of closing a mechanical manipulator to grasp a part on an assembly line is a function
of ime. If the grasping motion is completed too soon, the part will not have reached the manipulator yet.
If the grasping motion is completed too late, the part will have alrcady passed by the manipulator.

Time-value functions facilitate the descripuon of the time constraints and relatve importances of the
activities comprising a real-time application. Tte tme-value function records the value to be accrued by
completing the designated compuational phase at each point in ime,

Time-value functions seem to be a fairly natural expression of the utlity of completing a given
computation as a function of time in many situations. A skilled operator in a process control environment
or a carefully constructed functional requirements document for the system will often be capable of

describing all of the information encoded in a ume-value function.

Although time-value functions are a relatively new formalism for expressing the relative urgency and

$This sct of assigning values 1o specific acuivities comprising an applicabon cormesponds roughly to the normal assignment of
priorities 1o activities (where the activiues arc ofien called processes or tasks). In many modern apphcations a number of activiues
coordinate 10 provide a single application-level logical function, such as matenal tracking In such systems, some activities may
provide & specific service, such as accessing a tracking database, 1o a number of other activities with wigely varying values. The
assignment of a single value o the seiver acuviry s difficult. If it has a lower value than the activity that 1 is currently serving. then 1t
may not be scheduied as quickly as (t should be. On the other hand. f 1t has a higher value than the achvity 1tas servang, then it may
consume resources that could, and should. be used by other acuvities. This probiem 1s alleviated if an approach 1s taken where the
activites tin the computer application can coirespond dircctly 1o the application-level logical tunctiuns, while sull providing for
modular construction of the apphication. Thus has been done 1n the Alpha Operaung Sysuem.

C-14 Scheduling Dependent Real-Time Activities

importance of each activity in a real-ime svstem, they are beginning to make the transition into practce
and have been used successfully in a few selected contexts.

1.5. Technical Approach

The technical approach described in this section has been adopted in order to carefully address the
problem of scheduling with dependencies and to explore and evaluate potential solutions. Briefly, the
approach consists of the following major steps:

1. define a computational model within which to work;

2.devise an algorithm that possesses the required properties and express it within the
computational model;

3. insofar as possible, demonstrate analytically the correctness, utility, and tractability of the
algorithm;

4. simulate the performance of the algorithm on common classes of supervisory control systems
and compare v- th other relevant algorithms or ideals.

1.5.1. Define Model

The first step, defining a computational model, is intended to provide a clear, useful framework that will
capture the essental aspects of the problem to be solved and wiul also support the specificaton of
unambiguous solutions, embodied primarnily as scheduling algorithms. The need for a model that exhibits
all of the desired problem features, while excluding all factors that are non-essential for the problem
statement and solution is obvious. If the work is done with the simplest model that accurately expresses the
problem, then the work will be more comprehensible and succinct. Equally important is the requirement
that the model support the unambiguous specification of scheduling algorithms. Without such definitions,
the ability to perform precise/definitive analytic proofs to demonstrate propertes of an algorithm will be
lost. Also, a set of requirements for problem solutions is formulated in terms of the computational model.

1.5.2. Devise Algorithms

Afier the model has been created, it is possible to begin explonng vanous algorithms within the
framework provided by the model. While the computatuonal model is intended to support the development
of a number of scheduling algorithms and will provide an excellent platform for the extension of this work
in the future, this thesis does not explore a wide range of altemative algonthms exhaustively. Rather. it
identifies and characterizes the behavior and performance of a single algonthm that has the desired
propertes, called the Dependent Activity Scheduling Aigorithm (DASA). This algonthm will be descnbed
in two forms — a formal, mathemauncal form that will be used 10 define the algonthm and to suppont
analytic proofs and a procedural form to provide a measure of the algonthm’s complexity and to support
the simulation work that has been done.?

SActially, the mathematical definttion features non-determinism in certain places, indicating that ordenng 15 unimport At with
respect to the algonthm at those points. The procedural definition, however, does not contain any non-determinism and sc¢ can be
viewed as s single specific implementauon of the algonthm that the mathematical defimtion descnbes.

Scheduling Dependent Real-Time Activities C-15
1.5.3. Prove Properties Analytically

Once the DASA algorithm has been defined. analyuc proofs that demonstrate that it satisfies the problem
requirements may be devised. The formal model that is used to descnbe the scheduling algorithms is based
on automata that accept certain sequences of scheduling events. There is a different automaton associated
with each distinct scheduling algorithm. So, for example. the automaton associated with the DASA
algorithm will accept any sequence of scheduling events that is consistent with the behavior of the DASA
algorithm. Such automata can also accumulate the value assigned to an execution history. By comparng
the execution histories accepied by the automata corresponding to different scheduling algorithms, proofs
can be constructed that show that two scheduling algorithms accept different histones. Furthermore, the
proofs may compare the values accumulated ior all of the execution histories accpeted by the automata
representing certain scheduling algorithms for a specific set of phases with specific ime-value functions
and computation time requirements. (Taken together, these last two items — a phase’s time-value function
and its computation time requirement — are referred to as the phase’s scheduling parameters.) Such
compansons can be used to demonstrate that one scheduling algorithm is capable of generating schedules
that are superior to those of another algonthm, measured in terms of total value accrued by the application
during its execution history.

Unfortunately, real-time systems featuring complex, dynamic dependency relationships are quite
complex. And, although the analytic proofs can make some observations about the correcmess, behavior,
and value of the algorithm, a complete case for its ut'lity cannot be made without demonstrating its
performance under realistic conditions. To address this need, simulations have been camed out to
investigate the performance of the DASA algorithm and to demonstrate propertues that cannot be proven
analytically.

1.5.4. Simulate Algorithm

A parametenized workload has been devised that can mimic vanous numbers of activities displaying a
range of access pattems to a set of shared resources. Using thus workload, a suite of simulations has been
run. These simulatons compare the benefit of using the DASA algorithm instead of a more standard
algorithm — for instance, a static priority or deadline scheduling algonithm with FIFO queueing for access
to each shared resource. They also compare DASA’s performance with a reasonable estimate of the
theorerical maximum value that can be obtained. The DASA scheduling algorithm is relatively complex
when compared 10 more standard scheduling algorithms. Consequently, in a uniprocessor implementation
of the algorithm, DASA will require more time to select an activity to execute than a more standard
algorithm would In order to be fair in performing compansons among scheduling algonthms, this
additional overhead is also taken into account. The simulation results reveal situations in which applying
the DASA algonthm will probably be profitable.

Scheduling Dependent Real-Time Activities C-17

Chapter 2
The Scheduling Model

Models are central to abstract study. They allow the salient features of a potentially complex system to
be isolated and restrict the size of the space of possibilities to be investigated. Properly specified. a model
provides an unambiguous definition of the behavior of a system and highlights the underlying assumptions
that are made by the investigator. Within the framework of the model, simulations and analytic analyses
may be performed.

To take advantage of all of these properties, a model has been devised that possesses the necessary
nchness and within which scheduling algorithms can be studied. This chapter presents this model and
describes the rationale that shaped it

A formal computational model has been constructed to facilitate the definition and forinal analysis of
scheduling algorithms. Initially, this model is presented informally in order to allow for a natural
discussion of the issues that shape the model and the intended structure of the model and the environment
provided by real-time applications. This is followed with a formal description that provides a detailed,
precise specification of the model.

2.1. Informal Model and Rationale

The informal discussion of the computatonal madel will descnibe each of the principal elements of the
mode! in general terms. This should allow the reader to have an intuitive grasp of the interplav of vanous
elements of the model without having to wade through a mass of symbols and mathemaucs. This will set
the stage for the presentation of the formal mode!, where all of the details will be specified for each of the
principal elements of the model.

2.1.1. Applications, Activities, and Phases

As menuoned in the previous chapter (in Sections 1.1 and 1.2), an application is composed of a set of
activities. Each acuvity, in tum, comprises a sequence of computational phases. and each computational
phase is characterized by a time-value function that indicates the importance and urgency of that phase. At
any given time, an activity is operating in a siagle computational phase so that the actvity can be uniquely
identified by designating the phase that is currently underway. Therefore, the complete sct of acuviues can

C-18 Scheduling Dependent Real-Time Activities

always be represented by the set of phases currently in progress!©, and this set can be designated as:
{Poi P -}

The execution of an application involves sharing the single processor among the set of active phases over
time. The determination of which phase to run at any given time is made by the scheduler, one of the major
components of the operating system, based on the relevant information available to it.

2.1.2. Shared Resources

Phases may access shared resources. A request for such access is signalled by a phase by means of a
‘request’ event for the specific resource desired. Permission to access a shared resource is given to the
pbase by means of a 'grant’ event.

All shared resources that are held by an activity must be released at the completion or abortion of each
computational phase. This assumption is justifiabie on two counts, but may, at the same time, seem to be
restricuve. First of all, when a phase represents a distinct logical stage in a computation, there is good
reason for expecting that the resources used to carry out that phase may be released upon its completion.
Of course, if phases are used to represent very fine grained portions of a computation, then this assumption
may be called into question. However, since each phase is a unut of computation that corresponds to a
single time-value function, and since the time constraints that dictate the time-value functions are derived
by the physical necessity of completing a computation in a certain time frame, it seems clear that using
phases to delimit very small portions of an activity departs from the expected, and useful, applicadon of
phases to decompose activities in a real-time system.

The existence of stylized applications or system facilities gives rise to the second justificaton for the
assumption that all shared resources are released at the completion of a computatonal phase. One specific
example of such an application is an atomic transaction facility. The use of transactions in real-time
systems is appealing, but the question of how to schedule them is unsolved. By allowing this model to
capture the behavior of transaction faciliues as well as the assumed normal behavior of real-time activites,
the work presented bere can hopefuily make a somewhat greater contnbution.

2.1.3. Phase Preemption

At any given ume there is one phase that is actively executing on the processor. That phase may be
preempted by the scheduler at any ume. A preempuon is signalled by a ‘preempr-phase’ event. Should the
scheduler subsequently determine that the phase should be resumed, it would issue a "resume-phase’ event.

"%For the purposes of this model. a phase 13 considered to be "in progress” as soon as 1t 1s made known to the operating system. So,
for instance. a phase that has never executed a single instrucuon of its code 1s nonetheless considered 1o be 1n progress — 1t has
progressed far enough to submit its wial resource request (in terms of requured processing ume, importance, and urgency) to the
system.

Scheduling Dependent Rea!-Time Activities C-19
2.1.4. Phase Abortion

The scheduler may decide to abort a computational phase at any tme. This is indicated by issuing an
‘abort-phase’ event for the phase to be abornted. A phase might be aborted to free a shared resource more
quickly than 1t would otherwise be freed. Or, a ransacton facility might issue an abont in response to a
component failure or to resolve a detected deadlock.

The amount of time required 1o completely process an abort depends on the number and type of resources
held by the phase being aborted. Each time access to a new shared resource is granted to a phase. the
amount of ume required to abort the phase is incremented by an amount dependent on the newly granted
resource.

The incremental amount of abort time associated with a resource may arise from several sources. For
instance, for resources that are treated like data objects in a traditional database system, each data object
altered dunng the course of an aborted transaction must be returned to the same state it had prior to the
transaction. The tme required to restore this pre-transaction state is determined by the time required to
find the desired value followed by the time required to actually update the data object.

In other cases, more must be done than merely restoring the state of the appropriate memory locations.
Real-time systems often control physical processes by regulating actuators that effect changes in the
physical environment Permission to manipulale an actuator may be acquired by successfully requesting
exclusive access to a shared resource that is logically associated with the actuator. Once access to the
resource has been granted, the actuator is available to, and manipuiated by, the requesting computauonal
phase. If the phase is s:bsequently aborted during its execution, then it is quite possible that the actuator
may have to be mampulated once more in order to retumn the physical environment to an acceptable state.
The amount of time required for such compensating actions must be included in the time allotted for abort
processing for each resource of this type.

Following the completon of an abon, the effected activity will be ready to reexecute the aborted phase if
ume and resources permit.

2.1 5 Fvents

To mouvate the development of a formal model. imagine that all of the major components of an operating
system interact by signaling specific events to one another. Conceptually, these events encapsuiate
information and commands, and they can onginate within the operaung system or from the computational

phases comprising the application.

As shown in Figure 2-1, each event includes an eveat timestamp, an operation name. appropnaie
arguments for the operation, and the originator of the event. Timestamps are used to provide a global
ordening of all scheduling events. There are a small number of scheduler-related operations, which will be
descnbed below. And, as far as scheduling-related events are concerned. the orignator of an event is either

C-20 Scheduling Dependent Real-Time Activities

the scheduler itself (meaning that the event passed across the interface from the scheduler to the rest of the
operating system, possibly continuing on to an applicaton phase) or an individual phase (meamng that the
event passed from that phase to the scheduler, via the operanng system).

! pent optparms) O
where,
t is a umestamp,
op 1s a scheduling operation (as defined in Fig. 2-4),
parms is the set of arguments for the operation op.
0 is the onginator of the event (either p, for a phase, or S,
for the scheduler)

Figure 2-1: Format of Scheduler Events

2.1.6. Histories

Given this model of operaung system structure, an observer located within the operaung system could
watch an applicanon execute and monitor the interface between the scheduler and the rest of the operating
system. (See Figure 2-2.) The observer could then record a sequence of timestamped events passing across
the interface. Concepmally, these events would represent the commurucation of information and
commands to and from individual activity phases and the scheduler.

Such a sequence of scheduling events is called a fustory. In general, any sequence of scheduling events
constitutes a hustory. although not all histories are mearungful. To aid in recognizing which histones are
potentally meaningful, definitions have been developed for well-formed tustories (e.g., timestamps
increase throughout the tustory, the only event operauons included in the history are those listed in Figure
2-4) and for legal histones (ie., well-formed where the sequence of events is plausible, for example,
‘request’s precede 'gram’'s). Operations on histones have also been defined to facilitate therr
manipulation. For simplicity, the only histones that are ever dealt with 1in formal analvsis, after the
introducuon of these definitons, are legal, well-formed histonies. (The definiuons referred to in this

paragraph are presented in Section 2.3.2.8.)

Different schedulers wall select different acuviues for execution based on the relevant scheduling
parameters for cach phase urder consideraton. Consequently. different histones will be generated by
Jifferent schedulers, even though they may be exccuting the same appiicatuon under the same condiuons.
Examinung these histones allows the performance and behavior of the schedulers to be compared and
contrasted. Formally, the histones are examined by a special type of fiute state automaton, called a
scheduling automaton.

Scheduling Dependent Real-Time Activities C-21

4

request-phase grant preempt-phase
Apphcanon
@ Manager, Manager,
rqnt \ \grant
@ Scheduler Intf.
Observer

Figure 2-2: An Observer Monitoring the Scheduler Interface

2.1.7. Scheduling Automata

Since events and histories have been defined formaliy, automata can be created that recognize legal
histories corresponding to various scheduling algorithms. Such an automaton is called a scheduling

automaton.

Each scheduling automaton incorporates a scheduling algorithm. The automaton accepts — that is,
recognizes — any history that could have resulted from the use of the scheduling algorithm that it
embodies. All other histories contain some sequence of scheduling events that could not possibly have
resulted from the use of the embodied scheduling algonthm and are rejected by the automaton.

2.1.7.1. General Structure

Figure 2-3 shows the structure and the intemmal components of a scheduling automaton. The automaton
examines each event it a history in turn. Each event is either accepted or rejected. If any individual event
is rejected, then the entire history is rejected.

Each event comprises an operation, a umestamp, and a set of parameters for the designated operaton.
The automaton associates a preconditon with each type of event operation. When cons:dering an event,

Cc-22 Scheduling Dependent Real-Time Activities

Operation Selector

— 0 —

Pre,

f

Event Rejec[

State

!
Post,

——— K Vaumm

Comps

t

Post,

Params
Pre,
I l7<

event OP(params) Reject
I I

t

Figure 2-3: Scheduling Automaton Structure

the automaton’s Operation Selector activates a test that determines whether the prec: it n 2o Siaicd
with the event's operation is satisfied. If it 1s, then the event is accepted, and the actions specified in the
postconditions for the operation are performed. If, on the other hand, the preconditon for the event's
operation is not satisfied, the event — and hence the entire history — is rejected.

Ths is illustrated in Figure 2-3. The diamond-shaped boxes represent the picconditions associated with
the n event operations that may be accepted by the automaton. [n a manner analogous to a flowchart, the
diamond-shaped boxes have two possible outcomes, and an arrow leaves the box for each outcome. If the

Scheduling Dependent Real-Time Activities C-23

precondition test fails, the arrows marked "f" indicates that the history is rejected. Otherwise, the arrow
marked "r" indicates the the postconditions assoctated with the operation must hold.

The operation preconditions in the automaton test various conditions. These conditions may involve the
values of the automaton's state components, the event timestamp, or the parameters for the event operation
in question!!. The state components constitute the internal state of the automaton that persists across
events. On the other hand. the information contained in the Event Parameters box does not persist from
one event to the next — it simply represents the operation parameters and the nmestamp for the current

event

The availability of this information for precondition testing is shown by the arrows leading from the State

Components and Event Parameters boxes to each precondition box.

The postconditions that must hold after an event has been accepted may change some of the state
component values, as indicated by the arrows leading from each postcondition box to the State Component
box.

If all of the events in a history have been accepted, the Operaticn Selector signals the final step — shown
as a single box containing the word "ACCEPT” -— to declare that the history has been accepted.

2.1.7.2. Specific Scheduling Automata

The preceding discussion ottlines a standard automaton framework for expressing scheduling algorithms.
Each instance of a scheduling automaton for a specific scheduling algorithm weuid specicialize this general
form. This would typically involve: (1) the alteration of the preco~litons and posiconditions for the
operations accepted by the automaton; (2) the addition of some algonthm-specific state components; and
{3) the specificaton of a function that would select the phase to be executed at umes dictaied by the
automaton’s postconditicns (or, perhaps, its preconditions).

It is largely through the last specialization — the selection function definition — that the scheduling
algonttun embodied by the automaton is manifest. Different algorithms choose successor phases according
to different critena. (They may also be invoked to make selectons at different umes, so that the selection
function alone does not completely differennate all schedulers.)

The General Scheduling Automaten Framework is shown in Appendix A. It is a scheduling automaion
that lacks a few criucal pieces. While, it displays the structure of a scheduling automaton and has a noumber
of state components, it is intentionally general and does not embody any speciic scheduling algorithm.
Later in this chapter (in Section 2.3.2), portions of thus automaton framework will be examined in more
detail.

In later chapters, specific scheduling automata of interest will be -“tudied. These will be presented as

"I principal, the onginator of the event could also be tested by U - precondition, but thus has not proven useful to date.

C-24 Scheduling Dependent Real-Time Acnvities

extensions or specializanons of the General Scheduling Automaton Framework, sharing uts structure und a

superset of its state components.

2.2. Assumptions and Restrictions of Model

The computational moael presented 15 quite general. In order to focus on the quesunns of zreatest
immediate interest in thus thesis. a few simpliving assumpuons have been inade. In parucuiur. two specific

assumptions should be stated and examined at this point.

First of afl. ume-value functions are resucted to be simple step functions. The most impemant fvige 1 be
studied in the thesis is how 1o use dependency information to construct a scheduele that meximizes the value
that an application accrues without spending too much ume performing scheduling deasions. Thus rssug s
best 1solated if considerations such as maximizing the value attained by completing a phase are munall,
ignored This is an 1ssue that show 1 be dealt with in the future, but it seems like a second-order offect for

most Svsiems.

Secondly, the compute tine zquired by an acuvity to complete a computaticrai phase 5w umad 0 be
known accurately. In many real-time systems, this 1s a fairly reasonable assumpuon Adding addinenad
informauon to descnbe the actual aistnbution of computauon umes may wncrase the Juaiity of the
scheduling decisions, but it will also wnvolve more calculations and therefors be more crstly For the
sumple types of computatons done 10 typical supervisory control swstems, it may well be sufficient to take

the sumpler approach first, at a shghtly reduced cost

2.3. Formal Modei

In order to provids a ~rease framewnrk in which to discuss scheduling poiiaes for real-ume astiviues,
the following formal model has been adopied. It accommodates the aspects of the problem domain that
were presented in Chapter 1 and :ncludes all of the 1deas discussed wnformally in the preceding secuons of

this chapter.

Before discussing the model itself, the notation that 1s empleved s descnbed. fellowed by defimtions of
key pnmitves in the model. Next, the formal model 1s presented it depth. This discussion 13 [ocused
around the deim:tion of the General Scheduling Automaton Frumework. Al of the othe. sched iing
automata referred to by this work will be defined with respect to this framewark. Frnailv, 4 number of

observauons concermung the formal model are outlined.

2.3.1. Notation and Definitions

This secuon descnbes the notauon that)s used throughout the rest of this and subsequent chapters. The
notaton is explained at this pomnt <o that all of th. discussion that follows can be nterpretied

unambiguously.

Scheduling Dependent Real-Time Activities C-25

Naming Conventions A set of conventions are emploved in defining the computational model and the
scheduling automata'*:

e Identifiers written in all capital letters denote domains of values (e.g.. TIMESTAMP,
BOOLEAN); individual values from these domains are written in all lower-case leners (e.g.. 1,
true)

e Each scheduling automaton has certain state components associated with it; these are
designated by identifiers that begin with a single capital letter followed immediately by at least
one lower-case letter (e.g.. Total, AbortClock)

e If an automaton accepts an event in a history, the postconditions associated with the accepted
event hold; when these postconditions result in modifying the value of a state component, the
new value is followed by an apostrophe (e.g., Clock’ = Clock + 1 means that the new value of
the automaton state component named Clock is one greater than the old value)

Mode-Phase Pairs. Typically, specifying the current workload of the processor is simply a matter of

naming the phase that is being executed at this time. However, since it is possible to execute a phase
normally or to abort it, it is necessary to refer to the computation being performed on the processor at any
given time as a mode-phase pair. Such a pair specifies both the phase that is being executed and the mode
of execution (either 'normal’ or "abort’), and it 1s written as an ordered pair delimited by angle brackets:
<m, p>.

Two auxiliary functions exist to select the individual fields from a mode-phase pair. Specifically, if
mpp = <m, p>, then:
Mode(mpp)=Mode(<m p>)=m

Phase{mpp)=Phase(<m p>)=p

Time-Value Functions. The simplified time-value funcuons swdied in this work are described as step

functions, where the amplitude of a function indicates the value of completing the corresponding phase on
time. Let the time-value function for phase p be given by:

Value(p) = step(val, t)
where,

1. is the critical ime, or deadline, for this phase of an activity,
val > 0, is the value associated with compleung a phase by its deadline,

step(val, t Xt) = val, r<r,
0, t>1
Then define the following functions that select parameters from the simplified time-value functions:
Deadline(p) = DL(Value(p)) = DL(step(val. 1)) =1,

Val(p) = V(Value(p)) = V(step(val, 1)) =val

125ome of these conventions and much of the notation in genera) has been modeled after a style used hy Maunce Herlihy

C-26 Scheduling Dependent Real-Time Activities
2.3.2. The General Scheduling Automaton Framework (GSAF)

The General Scheduling Automaton Framework. expressed within the formal structure described in this
and previous sectons, provides an overall specification for the generic scheduling automaton. Although it,
in fact, embudies no specific scheduling algonithm and is incompletely specified in other respects as well,
the automaton framework is useful because all of the automata discussed in the rest of this work are denved

by modifying it in relatively minor ways.

in the following sections, formal definitions will be given for acuvities, phases, shared resources, events,
operauons, and histories. Within this context, the various pans of the General Scheduling Automaton
Framework can be expressed formally as well. These parts include the automaton state components and the
preconditons and postconditicns associated with the operauons accepted by the automaton.

23.2.1. Applications and Activities

An application is composed of a set of activities, each of which comprises a sequence of computational
phases. At any given tme, these activites can be referred to by means of the phase that they are currently

carrying out. Therefore the set of activines can be represented by the set of phases currently defined: {p,,

PPy}

While executing an application, an observer located within the operating system could monitor a
sequence of time-stamped events passing to and from the scheduler. These events are of the form:

! e OP(Parms) O

where,
t 1s a umestamp,
op 15 the operation associated with the event (as defined below),
parms are the arguments for the operation,
0 is the onginator of the event (either p. for a phase, or S,

for the scheduler)
A sequence of these events s called a history. Notice that some of these events are generated by individual

phases and some are generated by the scheduler.

23.2.3. Operations

The cperations that may occur in events, and the poterntial onginators of each, are shown in Figure 2-4.

The general meaming and usage of cach of these operations may be stated very bnefly:

s ‘request-phase’ — ends one computauonal phase and descnibes the requirements of the next
atomically;

® "abort-phase’ — abonts the designated phase. returning all of the shared resources held by the
phase to acceptable states for use by other phases:

e ‘'preempt-phase’ — suspends the currently executing phase;

» ‘resume-phase’ — resumes a phase that had previously been preempted,

Scheduling Dependent Real-Time Activities c-27

Operaton Type Potenual Originator(s)
request-phase(v. 1, .4) Phase
abort-phase(p) Scheduler or Phase
preempt-phase(p) Scheduler
resume-phase(p) Scheduler
request(r) Phase
grant(p.r.t,,..) Scheduler

where
v is a time-value function,
expected is the time required to execute the phase, assuming no

waiting must be done to acquire shared resources,

p designates a phase,
r designates a shared resource, and
L undo is the ime required to restore a shared resource to its

pre-grant’ed state

Figure 2-4: Operation Types and Originators
* ‘request’ — signals a request for access to a shared resource;

¢ 'grant’ — grants permission to access a shared resource.

However, the precise meaning and usage of these operations is wholly dependent upon the scheduling
displine embodied by the automaton. For instance, one automaton (embodying a FIFO or priority
scheduling algonthm, for example) may deem that a new ‘request-phase’ event may be signaled by the
currently executing activity at any time and that the activity may continue executing, while another
automaton (embodying the DASA scheduling algorithm, which is presented in Chapter 3) may require that
a scheduling decision must be made at that point, possibly resulting in the execution of a different activity.
Similarly, the rules for when, and even if, phases may be preempted or aborted may vary from automaton
to automaton.

Section 2.3.2.10 describes, in a little more detail, the semantics associated with these operations. Once
again, there is some vagueness due to the fact that the definition is couched in terms of an automaton
framework and not a true automaton instance. ln Chapter 3, specific definitions will be presented for the
operations accepted by the DASA Scheduling Automaton.

C-28 Scheduling Dependent Real-Time Activities

23.2.4. Computational Phases of Activities

The individual computational phases that compnse an actvity are delimited by ‘request-phase’ events. A
‘request-phase’ event simultaneously ends one computational phase of an actvity and descnibes the known

requirements of the the next computational phase.

Each phase that is successfully completed contributes value to the overall applicaton. That value is
determined by evaluating the ume-value function describing the phase just completed at the ume of
completion. On the other hand, an aborted computational phase contributes no value to the overall
applicaion — although it may free resources that allow other critical phases to execute.

2.3.2.5. Shared Resources

Phases may access shared re.ources. A request for such access is signalled by a phase by means of a
‘request’ event for the specific resource desired. Permission to access a shared resource 1s signalled o the

phase by means of a 'grant’ event.

All shared resources that are held by an acuvity must be released at the compleuon or abortion of each

computauonal phase.

2.3.2.6. Phase Preemption and Resumption

At any given time there is one phase that is acuve. [t may be preempted by the «oheduler Thus s
signalled by a ‘preempt-phase’ event. The scheduler may subsequently determine that the phase should be

resumed; this is signalled by a ‘resume-phase’ event.

The computational mode! allows a phase to be preempted at any time. Individual scheduling algonthms
may restrict thus by only allowing preemption at specific imes or by not permiung preemption at all. This
type of behavior is formally descnbed 1n the precondition of tiie ‘preempt-phase’ event operauon for each

specific scheduling automaton.

23.2.7. Event Terminology and “!otation

Some additional termiology and notation will be useful ror descussing events, Let an event, ¢ represent
the following event:

€= [!lfﬂl p(meLﬂ O

Then define the following simple funcuons:
Lmestampie) =t,

eventnpele) = op

source(e)y =0

Scheduling Dependent Real-Time Activities C-29

2.3.2.8. Definitions and Properties of Histories

Earlier, a history was defined as a sequence of events. Not all histories are meaningful or well-formed.
Letej. e;. e, ... denote events. Then, formally, a hustory, A, can be denoted as:

H=e0~el-e2- ... e,

"ow

where the operator "." denotes concatenation.

Informally, a projection of a history selects certain events from a history, preserving their relauve
postions in the projection. Tberefore, a projection of a history could include all of the 'request-phase’s
from the history or all of the events that dealt with a specfic phase. The svmbol "|" denotes a projection.
So for example, # | p represents the projection of history H onto phase p. This projection would include all
of the events that were onginated by phase p or that were oniginated by the scheduler and included p as an
operational parameter.

The conditions that define a well-formed history include!3:

e event timestamps must increase monotonically and must be unique — rest: examine the
timestamps on evemnts; for example, apply the function timestampsOK() to a history H to verify
that it meets this requirement, where timestampsOK() is defined as:

timestampsOK($) = timestampsOK(e) = true

timesmmpsOK(el-ezH) =
false, if timestamp(e|) 2 timestamp(e,)
timestampsOK(H), otherwise

e request for a resource must appear in the schedule before the corresponding grant — rest: for
each 'grant’ event, search the history of the phase in which the 'grant’ occurred for a
preceding 'request’ for the same resource

* a phase cannot be preempted if it is not actve; it cannot be resumed if it is active: and so on —
simple tests check all of these conditions

¢ a given phase either commits or aborts; the events assure that a singe! phase cannot do both:
however, a well-formed history must have at most one 'abort-phase’ event for any given phase
— test: examine the history for the occurance of two or more 'abort-phase’ events for a single
activity that ore not separated by a ‘requesi-phase’ event.

e expected compute time is accurate — test. check that the estimated computation time equals
the actual computational time used, for example, the following test could be applied.

cttest(H) = (Vp)compumeOK(H | p) v phaseaborted(H | p)
v phaseunfinished(H | p))

where,

31t is not always clear that a specific test be a requirement of a well-formed history or whether 1t 1s a requirement that determines
which histones will be accepied by a given automaton. There is no quesuon that the proper temporal ordenng of events s &
requirement for s well-formed history; however. tests that constrain the relative ordenng of specific events — for instance. ‘request’
and “grant’ events — 1n s hustory are not so obviously requirements for 8 well-formed history As s result, this list 15 merely an
attempt 1o lay down an imitial sct of tests. Some of these tests need not be done prior to submitung the history to an automaton — in
those cascs, the automaton will enforce the requirements venfied by the tests in question.

C-30 Scheduling Dependent Real-Time Activities

comptimeOK(p.0) = comptimeOK(p.e) =0

comptimeOK(p.e ey H) =
ty—t, +comptimeOK(H), if (e,=t, resume-phase(p) §
ve,=t, grant(p) §)
A(e,=t, preempt~phase(p) §
_VverEn request(r) p)
ta=t), if (e,=t, resume-phase(p) §
ve=t, grant(p) §)
A e =t request—phase(v.t) p
v e,=t, abort—phase(p) O)

phaseaborted(p.o) = false

phaseaborted(p.e-H) =
true, U e=t abort-phase(p) O
false, ife=t, request—phase(v.i,) p
phaseaborted(p H), otherwise
phaseunfinished(p,d) = true
phaseunfirushed(p.e H) =
false, if e=t abort—phase(p) O
v e=t, request—phase(v.t,)p
phaseunfinished(p H), otherwise

e expected abort ime is accurate — rest: similar to the previous test
e estimated computation time required for a phase must always be greater th :n or equal to zero'*

— test: straightforward inspection of each 'requesi-phase’ event in the history

* no ‘request’ event should request shared access to the nullresource — test: straightforward
inspection of each 'request’ event in the history

23.2.9. Automaton State Components

The state components associated with the General Scheduling Automaton Framework are shown in
Figure 2-5. Each component and the range of values it may take on, is descnbed below.

ExecMode, ErecMode is a relatiou that associates an execution mode with each phase. At any given
time, a phase can be either executing normally or aboring. Also at any time, a normally executing phase
can be aborted. Once an abort is initated, it must be completed before normmal execuuon of the entire phase

can again be attempted.

ExecClock and AbortClock. The next two state components shown in Figure 2-5 are used to track the
amount of ume required to complete the normal execuuon or the abortion of a phase. When a phase is

executing normally. the relation ExecClock indicates the amount of processing time needed to successfully

'"“An addiional requirement may also be placed on the parameters of & ‘requesr-phase’ event: the value function must be of the
appropnste form, as outlined below. This requirement has not been included in this hist because the tests that are present all apply to
the general case of scheduling with dependency considerations 1n a real-ime environment using information availabic trom arbitrary
ume -value funcuons. This requirement 1s related to a simplificaton made 1o make the work more clear and more manageable. and so
does not seem to carry the same weight as the others listed above.

Scheduling Dependent Real-Time Activities C-31

General State Components:
¢ ExecMode: PHASE — MODE (MODE is either 'normal’ or ‘abort’)

o ExecClock: PHASE — VIRTUAL-TIME

o AbortClock: PHASE — VIRTUAL-TIME

e ResumeTime: PHASE - TIMESTAMP

e Value: PHASE — (TIMESTAMP — VALUE)

e Total: VALUE (initally '0")

e RunningPhase: PHASE (initially 'nullphase")

e PhaseElect: MODE x !® PHASE (initially ‘<normal, nullphase>')
o PhaseList: list of PHASE (initially '6")

Domains for State Component Values:
¢ MODE: nomal v abort

e PHASE: € {p, p;.p; - .. | v nullphase

¢ RESOURCE: € {rj r;. 7y ... | v nullresource

o TIMESTAMP: real number, expressed in ticks of standard clock

e VALUE: real number 2 0

¢ VIRTUAL-TIME: real number 2 0. expressed in ticks of standard clock

Figure 2.5: Siate Components of General Scheduling Automaton Framework

complete the execution of that phase. Similarly, when a phase is aborting, AbortClock indicates the amount
of processing time needed to complete ihc abort procesaing.

At the start of a new phase, ExecClock associates a value provided by the actvity with the phase. If the
pbase was executed in isolation'®, ExecClock specifies the amount of time that would elapse before the
phase would complete executing. Each time the phase executes, the value of ExecClock for that phase
decreases. When it reaches zero, then the phase has completed execuuon.

On the other band, AbortClock represents the time required to abort the current phase. In addition, the
exact length of ume required to abort tae phase depends on the number and type of shared resources that it
has acquired. Therefore, since no shared resources have yet been acquired. AbortClock is zero at the stan
of every phase. Subsequently, after any shared resource is requested and granted, the value of AbortClock

This dessgnates a cross product. Thatis, PhaseElect 1s actually a mode -phase pavr, as described in Section 2.3.1

By executing n 1solauon, contention with other activities for both processor cycles and shared resources 1s eliminated. In fact, the
phase docs not execute in 1solauon and these factors cannot be ignored — leading to this scheduling work.

C-32 Scheduling Dependent Real-Time Activities

is incremented by an amount that is a function of that resource. This amount of ame has been chosen to
allow the shared resource to be returmed to an acceptable state so that other phases may use it.

ResumeTime. ResumeTime associates with each phase the time at which it last resumed execution. This
value is useful in keeping the values of ExecClock and AbortClock accurate for the executing phase.
Whenever the currently executing phase 1s surrendenng the processor, Resumelime can be compared o the
current ume to determine the amount of computation time consumed by the phase — thus allowing
Ex:2cClack or AbortClock to be updated. depending on the current execution mode.

Value. The relation Value associates time-value functions with phases. In this case, the time-value
functions are themselves represented by relations: given a time, a time-value relanon will return the value
accrued by completing the pbase at that ime. As stated in Section 2.2, the time-value functions considered
in this work are simple step functions.

Total. Total accumulates the values accrued by successfully completing phases. Imually, since nothing
has been accomplished, Total is zero. Then, after any phase is successfully completed, the amount of value
indicated by the phase's Value relation for that completon time is added to Toal.

The values of the Toual state components of two different scheduling automata that have worked on the
same application can be compared to determine which yielded a higher total value for the application.
(This fact will be used in simulations and proofs in later chapters when comparing two different scheduling
algorithms.)

RunningPhase. RunningPhase indicates which phase is currently executing on the processor. If no
activity is currently executing — as is the case initially — RunningPhase is equal to nullphase.

PhaseElect. PhaseElect also indicates a phase. lo this case, it is the phase that should be executing now.
If this is different than RunningPhase, then the currently executing phase should be suspended and replaced
by the PhaseElect. Once again, in the initally empty system, PhaseElect specifies that the nullphase
should be executed normally.

PhaseElec: names net only the phase 1o be executed but also the execution mode for the phase.

PhaseList. Pha-eList is simply a list that containing all of the phases known to the automaton. This iisi
changes as new phases arrive and old phases are completed. Iniually, since there are no phases PhaseList
1s empty.

Automaton-Specific State Components. Other state componeats are also associated with an automaton.
These are used to handle some of the bookkeeping details for the specific scheduler being used. The
components that appear above are intended to reflect the state that any specific scheduler would need and
maintain under this general model.

Specific initial values may be given to many of these state components in order to satisfy the

requirements of a given automaton.

Scheduling Dependent Real-Time Activities c-33

Domains for State Component Values. The domains that supply the values for the state components

are straightforward and are shown in Figure 2-5 along with the state components of the General Scheduling
Automaton Framework. The domain MODE contains only two values: normal and abort. The domain
PHASE consists of all of the phases known by the automaton as well as the nullphase. Similarly, the domain
RESOURCE consists of all of the shared resources known to the automaton as well as the nullresource. The
values from all of the time-value functions are drawn from the domain VALUE. These must be positive
(according to the assumptions stated earlier in Section 2.3.1) and are chosen from the real numbers so that
there are no unnecessary restrictions placed ou them. The domain VALUE also contains zero since Total
receives its value from this domain and it initially bas no accrued value.

Time is central to the behavior of real-time systems, and the domain TIMESTAMPS provides a source of
markers in time for the automaton to use. Each timestamp is expressed in terms of ticks of a standard
clock. The ticks of this clock are equally spaced in time; and in fact. nothing in the model prevents the
timestamps from taking on fractional oumbers of ticks — thus allowing arbitrarily great precision to be
obtained in representation of times.

The other domain related to time is the VIRTUAL-TIME domain. Values from this domain represent time
durations. Once again, they are expressed in terms of ticks of the standard clock. These durations are used
to supply values for state components like ExecClock and AbortClock where only non-negative durations
are meamngful.

2.3.2.10. Operations Accepted by GSAF with Preconditions and Postconditions

The operations recognized by the General Scheduling Automaton Framework are shown in Figure 2-6.
(Notice that this figure has two pans, appeaning on pages C-34 and C-35, respectively.) Minimal, or
skeletal, preconditions and postconditions for cach operation are included in the figure.

In later chapters, some specific scheduling automata will be discussed in detail. Each discussion will
include a description of the preconditions and postconditions associated with the operations accepted by the
automaton under consideration. Consequently, the discussion of those topics in this section will be bnef.
Only the highlights and general structure of an automaton's operauon specification will be addressed here.

Since the ‘request-phase’ event denotes the initiation of each computational phase of every application
activity, it is accepted by every scheduling automaton. Furthermore, ‘its precondition is simply “true”,
indicating that new phases can arrive at any time. This does not necessanly require that a new scheduling
decision must be made cpon the armival of each new phase, although some automata may do just that.
Since such a scheduling decision is not made in every scheduling automaton, no decision is made in the
Genperal Scheduling Automata Framework.

In the same spirit, the postconditions for the 'request-phase’ event include only those conditions that will
almost centainly belong in every scheduling automaton of interest. Those postconditions: (1) accumulate
any value accrued from completing a previous computational phase of the same activaty: (2) initialize the
automaton’s state componeunts to capture the new phase’s scheduling parameters; and (3) update the list of
phases known to the automaton based on the new phase’s scheduling parameters.

C-34 Scheduling Dependent Real-Time Activities

® !t on; T€QUest-phase(v, t

preconditons:
true <No preconditions here so that interrupts and other new phases
can occur at any time>
postconditions:
if (RunningPhase = p) thea
if (ExecMode(p) = normal) then
Total’ = Total + Value(p)(t

expected)P

evml)

else
:no value for aborted phase
;release the resources acquired during the phase

:accept values for scheduling parameters
Value'(p) = v

ExecClock’(p) = texpected
AborntClock'(p) =0

ExecMode'(p) = normal

;note that p is not resource-waiting

;make sure p is part of the list of phases, if necessary
if(lexpecu > 0) then
PhaseList’ = PhaseList U {p}
else
PhaseList’ = PhaseList - {p}
ot abort-phase(p) O:

event
preconditions:
<Specific to the scheduler under considerasion>
postconditions:
ExecMode'(p) = abort

ResumeTime'(p) =t,, .,

Figure 2-6: Operations Accepted by General Scheduling Automaton

Notice that value is accumulated for the completion of a previous phase only if the currently executing
phase issues the ‘request-phase’ event, thereby signaling that the current phase has completed execution. 1f
some other activity issues the ‘request-phase’ event, it is signaling the existence of a hew phase to the

automaton while a different phase is executing, so no phase completion has occurred.

In addition, no value is accrued for a phase that has been aborted. If, on the other hand, the phase has

completed successfully the value accrued is determined by evaluating its ume-value function at the ime of
completion.

Finally, since it requires a positive amount of time to accomplish any processing. a expectea PATAMELET that
is less than or equal to zero indicates that there is no subsequent computational phase for the activity

—_

Scheduling Dependent Real-Time Activities C-35

o, . preempt-phase(p) S:

preconditions:

<Specific to the scheduler under consideration>
postconditions:

if (ExecMode(p) = normal) then

ExecClock'(p) = ExecClock(p) - (t - ResumeTime(p))

cvent

else
AbortClock'(p) = AbortClock(p) - (1

X3 resume-phase(p) §:

even:

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ResumeTime'(p) =t

- ResumeTime(p))

event

event

o1, .n TEQUESIT) D:

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ExecClock’(p) = ExecClock(p) - (t

®(, ons £FANLP, I, undotime(r)) S:

preconditions:

<Specific 10 the scheduler under consideration>
postconditions:

ResumeTime’(p) =t .,

AbortClock'(p) = AbortClock(p) + undotime(r)!’

- ResumeTime(p))

event

Figure 2-6: Operations Accepted by General Scheduling Automaton, continued

issuing the 'request-phase’ event. In that case, the phase is removed from the PhaseList. in all other cases,
the chase is included in the Phaselist.

The abort-phase’ event in the General Scheduling Automaton Framework is similar to the remainder of
the scheduling events: its precondition is automaton-specific and its postconditions specify bookkeeping
that must be done in the event that the event occurs. In particular, the ‘abort-phase’ event’s postconditions
change the phase’s execution mode to abort and note the ime that the phase began aborting. In the event
of a preemption, this tme (ResumeTime) will be consulted to adjust the phase’s AbortClock to indicate the
amount of time required to comp!~w the abort processing, which will be used in subsequent scheduling
decisions.

""The function 'undotine()’ indicates the amount of time that will be required o restore the resource just acquired to an acceptable
state for use by another acuvity. In many cases, this may simply invoive returning the resource to the state it had at the ime it was
acquired. In other cases, retuming the resource to any of & number of semantically equivalent states may be sufficient or actions may
have to be performed to affect the physical process under controlled. The actions required and the amount of time they will take may
very from system o system and from application to application. Consequently. for the purposes of this work, they have been cast as a
function that acts to ndicate thewr role without applying a single definition across all resources or applicauons.

C-36 Scheduling Dependent Real-Time Actvities

The ‘preempt-phase’ event has an automaton-specific precondition. Iti pestconditions handle the
bookkeeping associated with preempting the executing phase. Specifically, ExecClock or AbortClork is
updated to reflect the amount of time still required to compleie the normal or abort processing of the phase,
respectively. This is accomplished by subtracting the amount of ume the phase had executed prior 10 the
preemption from the amount of time it sull needed to complete processing before it began that execution.

A ‘resume-phase’ event is used to resume execution of a phase that had been suspended by a ‘preempt-
pbase’ event. The 'resume-phase’ event, which has an automaton-specific precondition, simply notes the
time at which the designated phase resumed execution. This time is used to adjust the state components
dealing with the required execution ume of the phase whenever the phase is subsequently preempted.

Once again, the ‘request’ event has an automaton-specific precondition. Its postcondition updaies the
appropriate state component clock for the phase, depending on its execution mode. This is done to
facilitate the use of a scheduling decision as a result of a request for a shared resource. The updating of the
relevant state components ensures that the automaton will make a decision based on the most up-to-date

information.

The "grant’ event, which also has an automaton-specific precondition, notes the time at which the phase is
awarded the shared resource it had previously reyuested and begins execution. Another postcond.tion
increments the AbortClock state component for the designated phase to reflect the amount of time that will
be required to retumn the shared resource to an acceptable state for another phase in the event that the
current phase is aborted. This length of time may vary from resource to resource, and so is denoted as

undotime(r), a function of the resource in question.

Although the 'request’ and 'grant’ phase events behave as if the processor is surrendered after each
request, thus does not have to be the case. The ‘request’” event can be immediately followed by the
corresponding "grant’ event to model the situation in which the processor is not surrendered.

Typeface Convention. In the definition of the GSAF, all of the operation definiions — their

preconditions and postconditions — have been presented with a roman (nomal) typeface. In the future,
when automata are presented, those parts that are common with the GSAF will continue to be written in a
roman typeface. However, those pans that are different will be wntten in an italic typeface. Hopefully,
this will allow the reader to focus on those parts of the definition that are differcnt from the general
framework.

2.3.2.11. Active Phase Selection

Although the General Scheduling Automaton Framework contains state components and will accept some
scheduling events, it is not really a scheduling automaton. Rather, it 1s a framework: a skeleton that has
most, but not all, of the elements of a scheduling automaton. For instance, as was discussed in the previous
section (Section 2.3.2.10), most of the preconditons for accepung varous scheduling events are
unspecified in the General Scheduling Automaton Framework. Also, while some postconditions have been

specified, they have not been completely specified.

Scheduling Dependent Real-Time Activities Cc-37

Another of thc more noticeable omissions in the specificaton of the General Scheduling Automaton
Framework is the lack of a function to select the next phase to execute. Furthermore, not only is this
function not specified. the places in the automaton where it is to be invoked are also unspecified. This is
because different schedulers invoke this ‘unction at different times. Therefore, there is no canonical set ot
times (comesponding to a fixed set of points in the General Scheduling Automaton Framework) where all
scheduling algonithms invoke a phase selection function. As a result, this has been omitied from the
General Scheduling Automaton Framework, which acts as a lowest common denominator of sorts among
instance of scheduling automata.

To illustrate this point, consider two simple scheduling algonthms: FIFO scheduling and prionty
scheduling. Whenever a new computational phase enters the system — as indicated by a new 'request-
phase’ event — the FIFO scheduling automaton will note that fact, but will not invoke a phase selection
function to determine what phase to execute. It simply allows the currenty executing phase to proceed
until it gives up the processor.

On the other hand, the priority scheduling automaton will make a new determination concerming which
phase to execute: if the new computational phase has a higher prionity than the currently executing phase,
then the acuve phase is preempted in favor of the new phase.

More complex scheduling aigorithms may c¢valuate the phase selection function at other times as well.
For instance, toe DASA algonthm described in Chapter 3 invokes the phase selection function whenever a
shared resource 1s requested by any phase. It is also conceivable that there are schedulers that might select
which phase to run asynchronously with respect to the given set of scheduler operations. For example, a
round robin scheduler that gave each phase a tum by offering it a time-slice would make preemption
decisions following evenly spaced clock interrupts. To accommodate such extensions, new scheduling
operations would have to be added to the model. While that is straightforward, it is not required to
investgate the algorithms of interest for scheduling supervisory control systems, and so it would only serve
1o complicate the model. Consequently, the scheduling operatons included in the model represent a
minimal set that captures all of the relevant behavior within supervisory control systems.

2.3.3. Notes

A few fairlv minor facts can be noted concerming the GSAF framework. The following paragraphs
address some of them. Most of them explain how facets of rcal applications are, or can be, reflected in the
formal model.

2.33.1. Manifestation of Assumptions and Restrictions

Section 2.2 descnbes the specific assumptions 2- § restrictions that are *mploved in this work. A look at
the GSAF framework will reveal how those assumpticns are manitest

The first assumption stated that all time-value functons are restncted to be simple step funcuons. The

definition provided for ume-value funcuons 1n the mode! in Section 2.3.1 captures that assumpuon directy.

Scheduling Dependent Real-Time Activities Cc-39

are often not explicitly recognized as scheduling events. Specifically. the resource-related events —
"request” and 'grant’ — are directly presented to the scheduler because they may well result 1o new
scheduling decisions.

This should be contrasted with many other models and operational systems. There, there are two separate
operating system facilites: a scheduler and a resource manager. (See Figure 2-7.) The resource manager
may be representing one or more actual system managers — the lock imanager and the semaphore manager,
for instance.

request-phase

grant OS

8 B

ResourceQueves

rasume-phase
block-phase

Scheduler Resource Manager

Integrated Scheduler &
Resource Manager

Figure 2-7: Organizations of Scheduling Functions

The difference in organizaton is often sicnificant. When there are separate managers handling access to
resources, they will often make implicit scheduling decisions that are not in keeping with the overall goals
of a real-time system. For example, resource managers may service resource requests in a first-come-first-
serve manner. In that case, a request may be placed in a FIFO (first in, first out) queue if the desired
resource is not currently available. As a result, not only is the requesting activity blocked when it is
enqueued, 1t is not even considered by the scheduler again untl it has been removed from the queue. In
effect. all of the activities that preceded it in the queue "vere given precedence over it, regardiess of the

relative urgency of their ime constraints or any other deperdency considerations.

It would be much more appealing to apply the same type of algorithm to select which activity in the
queue should be receive access to the resource next that is used in selecting which activity should execute
next in general. The work done here does employ such an integrated approach to scheduling, and the
interfaces described in the model reinforce this integrated scheduling notion.

Scheduling Dependent Real-Time Activities c4l

Chapter 3
The DASA Algorithm

The primary algorithm investigated in this thesis is called the DASA (Dependent Acuivity Scheduling
Algonthm) algorithm. It addresses the dependency concems descnibed in the pre us chapters in a clear
and natural manoer. The algorithm is based on a set of beunistcs that deliver the type of behavior required
in real-time systems.

Thus chapter presents the DASA algorithm. First, the algonthm is described in general terms, placing
emphasis on the rationale for the algorithm. Then a formal definition is discussed, providing a framework
for careful analysis of the algorithm. Finally, the scheduling example from Section 1.3 is revisited. This
time the DASA algorithm is employzd to make all of the scheduling decisions to contrast its behavior with
that of the algonthms previously used.

3.1. Dependent Activity Scheduling Algorithm

In this section, the underlying heuristics for the DASA algorithm will be described, along with the
rationale for their adoption. This sbould help to explain the high level goals for the algorithm. That
discussion will be followed by an informal definition of the DASA algorithm. (The next section, Section
3.2, will provide the formal definition.)

3.1.1. Rationale for Heuristics

The DASA algorithm was construcied to possess a set of properties, each of which is logical and has
appeal on its own merits. Taken together, they suggest that the algorithm will be quite cffective in handing
scheduling problems with dependency considerations.

Before looking at the definition of the DASA algorithm, two important metrics must be understood.
These are the notions of value density {Locke 86] and potential value density. Value density 1s 2 measure
of how much value (as defined by the application) per unit t .ie will be acquired by executing a phase. In
the cases considered by this thesis, where time-value functions are simply step funcuons, the value density
is the size of the step function — the value — by the required computauon time ',

In more complex cases, more involved Ume-value functions and less cerain cornputation lime requirements are considered.

c42 Scheduling Dependent Real-Time Activities

Potential value density extends the moton of value density to a collection of phases composed of a
designated phase and a set of phases on which it depends. In fact, the potential value density of such a
collection of phases is the total of their individual values divided by the total required computation time for
all of the phases in the collection. Furthermore, since phases may be aborted at any time, aborting phases
must be handled differently than those that are executing normally — an aborting phase contributes no
value, but it does require computation time. Therefore, aborting a computation will always act to reduce
the potental value density of a collection of phases. The advantage that aborts offer is that they may
greatly reduce the delay that must be incurred before starting the execution of a designated computation.

With these metrics in mind. the properties desired for the DASA algorithm can be reviewed:

1. explicidy account for dependencies — account (in terms of both time required and in
potendal value available) for not only a phase. but also for other phases on which it depends;

9

. minimize effort — apply the minimum amount of effort necessary to allow a phase to be
scheduled (use aborts to expedite this process); ’

3. maximize return/benefit — examine phases w order of decreasing potential value density,
thereby always obtainung the greatest return (in value) on a given investment (of time);

4. maximize the chance of meeting deadlines — approximate a deadline scheduler insofar as
possible;

S. globally opumize schedule — review the schedule constucted incrementally and
collapse/remove redundant or unnecessary sieps.

3.1.2. The DASA Algorithm

Since mutual dependencies among activities may arise during the course of execution, the DASA
algorithm actually has two major parts: the Dependency Scheduling Algorithm, which, given a set of
phases (and their scheduling parameters) without circular dependencies, will select the next phase to be run,
and the Deadlock Resolution Algorithm, which performs a similar function when there are circular
dependencies.

The following two sections describe each of these component algorithms in detail.

3.1.3. The DASA Algorithm: Dependency Scheduling

The DASA algorithm conforms to the computational model defined in Chapter 2 and meets the problem
requirements, while also possessing the properties listed in Section 3.1.1 above.

The following fragment illustrates how the potential value density (PVD) for a phase p is calculated for
use in DASA:

Scheduling Dependen: Real-Time Activinies c43

PVD(p)= O, if pis aborting
Valip}+PV(Dep(p)) :
= otherwise
ExecClock(p)+PT(Dep(p))
PV(p)= 0, if p=nuliphase
0, if quicker to abort p than to complete p
Val(p)+PV(Dep(p)). otherwise
PT(p)= 0, if p=nullphase
<time to abor: p>, if quicker to abort p than to complete p
<time to complete p>+PT(Dep(p)). otherwise
Dep(p) = nullphase, if pis ready to run
<phase on which p depends>, otherwise

Notice that this calculation demonstrates a property meationed earlier: the least amount of time possible
is expended to make the phase ready to un. That is why the decision is made to abort if that will result in a
shorter delay before the phase in question is ready to execute.

For any phase, the set of phases on which it depends, either directly or indirectly, and which must
therefore be completed or aborted before it can run is catled its dependency list. In the definition for PVD,
the set of phases examined while evaluatng Dep(p) consttutes the dependency list for a phase. The
general concept of a dependency list could also be used by other algorithms similar to DASA, aithough
their specific definition of the dependency list might vary somewhat to reflect a different set of desired
properues.

A simplified procedural version of the DASA Dependency Scheduling Algorithm is shown in Figure 3-1.

1. create an empty schedule

2. determine dependency list and PVD for each phase

3. if deadlock is detected, use DASA Deadlock Resolution Algorithm
4. sort phases according toc PVD

5. examine each phase in tum (highest PVD first)
a. tentatively add phase and dependencies to schedule

b. test feasibility of schedule
c. if feasible, make tentative changes; else, discard them
d. reduce schedule, if possible

Figure 3-1: Simplified Procedural Definition of DASA Scheduling Algorithm

Notice that this scheduling algorithm considers all of the existing phases each time a scheduling decision
is made. Most scheduling algorithms do not do this — they typically consider only those that are ready to

C-44 Scheduling Dependent Real-Time Activities

run immediately, not phases that are blocked awaiting access to shared resources. A cnitical objective of
the DASA algorithm is to take advantage of thus additional informabon to improve the quality of
scheduling decisions. [t is information that the system could alwayvs examine; but in non-real-ume svsiems,

there is no motivauon to look at 1t.

3.1.4. The DASA Algorithm: Deadlock Resolution

The work that has been done up to this point focuses on the Dependency Scheduling Algonthm poruon of
the problem. The Deadlock Resolution Algorithm must still be devised. although it can be anticipated that
it will have properties and use methods that are similar to those employed by the Dependency Scheduling
Algonthm.

3.2. Formal Definition of DASA

Thus far, the rationale and informal descrnipuon of the DASA algonthm have been presented. In order to
provide a rigorous specification that will permit analytic study of the algorithm, a more formal defirution is
required. That definition is presented in the following secuon along with explanations of interesting and
impontant points.

3.2.1. The Formal Definition

The formal definition is cast in terms of the automaton model presented in Chapter 2. Remember that a
scheduling automaton examines histories of scheduling events and either accepts or rejects them. A history
is accepted by a scheduling automaton if and only if the sequence of events compnsing the history could
have been generated by the scheduling algorithm embedded within the automaton.

Although all scheduling automata share a common framework. each individual automaton has several
unique pans: (1) its state components; (2) the scheduling events that it recognizes — including the
preconditions and postconditions associated with recognizing each event and the changes that occur in state
component values as a result; and, of course, (3) the scheduling algonthm that is embedded within the
automaton. Each of these parts is formally defined in the sections that folfow for the DASA Scheduling

Automaton.

3.2.1.1. DASA Automaton State Components

The DASA algonthm considers all existing phases each time a scheduling decision 1s made. In the
formal definition that follows, let the set of phases currently known to the automaton be represented as {p,,

PPy - |
Similarly, let the set of resources currently known to the automaton be represented as {r,, r,. ra. ... |

The state components associated with the DASA scheduling automaton are presented in Figure 3-2.

Scheduling Dependent Real-Time Activities Cc45

General State Components:
e ExecMode: PHASE — MODE (MODE is either ‘normal’ or 'abort’)

e ExecClock: PHASE — VIRTUAL-TIME

¢ AbortClock: PHASE — VIRTUAL-TIME

o ResumeTime: PHASE —» TIMESTAMP

e Value: PHASE — (TIMESTAMP —» VALUE)

¢ Total: VALUE (inigally '0")

o RunningPhase: PHASE (initially "nullphase ")

¢ PhaseElect: MODE x PHASE (initially "<normal, nullphase>")
o PhaseList: list of PHASE (initially '6")

Algornithm-Specific State Components:
» Owner: RESOURCE — PHASE (initially 'nullphase’ for each resource)

o ResourcesHeld: PHASE — list of RESOURCE

e ResourceRequested: PHASE - RESOURCE (imtially ‘nullresource’; also note:
ResourceRequested(nullphase) = ‘nullresource’)

Domains for Value Tvpes:
e MODE: normal v abort

e PHASE: € {p;. p;.p5. ... } v nullphase

¢ RESOURCE: € (ry, ;.75 .. } v nullresource

o TIMESTAMP: time, expressed in ticks of standard clock

e VALUE: real number 2 0

e VIRTUAL-TIME: real number 2 0 (represents a ime duration)

Figure 3-2: State Components of DASA Scheduling Automaton

There are two distinct groups of state components shown: general state coniponents, which are found in
any scheduling automaton, and algorithm-specific state components, which are defined only for a particular
scheduling automaton.

The general state components were discussed in Chapter 2. They include a number of components that
describe important characterisics of each individual phase (ExecMode, ExecClock, AbortClock,
ResumeTime, and Value), as well as components that indicate the status of the automaton itsell (Total,
RunningPhase, PhaseElect, and Phaselist).

All of the algorithm-specific state components of the DASA Scheduling Automaron deal with requesung

C46 Scheduling Dependent Real-Time Activities

and holding shared resources. The relation Owner indicates which, if any. phase currently possesses each
of the shared resources. The Owner of all unassigned resources is nullphase. The ResourcesHeld relation
associates with each phase the list of resources that have been granted to that phase. And finally. the
ResourceRequested relauon specifies which resource a given phase desires. Whenever, there is no

unsatisfied resource request for a phase, the comresponding ResourceRequested value is nullresource.

The bottom portion of Figure 3-2 defines the values that each of the state components may assume. All
of these are general value domains that were discussed when the scheduling automaton model was
presented in Chapter 2. They are repeated here only for convenience — they allow the relation definitions
t0 appear in context so that earlier material need not be consuited.

An iniual value is shown for many of the state components. These values indicate that, at the outset,
there are no phases knowan to the automaton, no value has been accrued, all of the shared resources are
available, and the processor is idle. Each of the relations that prdvide information for each phase in the
svstem is initially empty since there are no phases. As phases amive (indicated by issuing request—phase
events), entries are made in each of these relations.

Definitions. or anywhere else]

Each activity/phase has a state associated with it. It is either running or it is blocked. If it is blocked, it
may have been preempted or it may have blocked to wair on a resource that was unavailable when
requested.

Running(p) = p=RunningPhase

Blocked(p) = p# RunningPhase
ResourceWaiting(p) = (3r)(ResourceRequested(p)=rar# nullresourceAOwner(r)#p)

Preempted(p) = Blocked(p)s — ResourceWaiting(p)

Access Queues for Resources. There is one state component that is not present in the DASA Scheduling

Automaton but is commonly found in other scheduling automata for this problem domain: a relation that,
given a resource, specifies the queue of phases that are waiting for access to the resource. That state
component is not found in this automaton because it tends to reflect an ordering among pending requests
for a shared resource — for example, requesters may be served in a FIFO fashion or according to their
priority, While the DASA algorithm will in some sense order such requests, it is done in a completely
dynamic fashion. The needs of each phase, including access to shared resources, are considered along with
the benefit of executing the phase each time a scheduling decision 1s made.

3.2.1.2. Operations Accepted by DASA Aviomaton

The operations recognized by the DASA scheduling automaton and their preconditions and
postcondiuons are shown in Figures 3-3, 3-4, and 3-5. Figure 3-3 presents the 'request-phase’ operaton,
which is used to initiate each computatonal phase of the activitics comprising the application. Figure 3-4

Scheduling Dependen: Real-Time Activities C47

depicts the other operations involving phases that are recognized by the DASA Scheduling Automaton.
And Figure 3-5 shows those operations that deal specifically with shared resources. The following
paragraphs describe each of these operations in detail.

® [, en: FEQUeESt-phase(v, !

preconditons:
true <No preconditions here so that interrupts and other new phases
can occur at any time>
postconditions:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total’ = Total + Value(p)(t

expecud) p:

CVCT“)

else
;no value for aborted phase
.release the resources acquired during the phase
for rin ResourcesHeld(p)
Owner’(r)=6
ResourcesHeld (p)=6
Value'(p) = v
ExecClock'(p) = tcwc‘clcd
AbortClock'(p) =0
ExecMode'(p) = normal
:note that p is not resource-waiting

:make sure p is part of the list of phases, if necessary
if (t,:xpmmi > 0) then
PhaseList’ = PhaseList U {p}
else
Phasel.ist’ = PhaseList - {pLO
PhaseElect’=SelectPhase(PhaseList’)
if (p = RunningPhase) then
.give up processor until next ‘resume—phase’
RunningPhase = nullphase
else
:happened under interrupt—Ileave ‘RunningPhase’ alone

Figure 3-3: 'RequestPhase’ Operation Accepted by DASA Scheduling Automaton

Request-Phase. The 'request-phase’ operation delimits computational phases for an actvity. Each

20Here, the value assigned 10 one state component (Phaselisr) 1n these postconditions is used W determine the value of another
state component (PhaseElect’) in the same group of posiconditions. [n the interests of convenience and clanty, this has been done,
rather than wnung all of the new state component values n terms of only the old state component values. Of course, it is possible 10
express the new value of PhaseElect in terms of the old state component values, as foliows:

if (i > 0) then
expecred
PhaseElect = SelectPhase(Phaselist ' {p})
else
Phaseblect = SelectPhase{ Phaselast - |p})

C8 Scheduling Dependent Real-Time Activities

ot .abon-pha:e(p) 0:

eaent

preconditions:

{(Running P'.ase=nullphasein(Phase(PhaseElect)=p)
A(Mode(PhaseElecty=abort)

postconditions:
ExecMode'(p) = abort
ResumeTime'(p)=t_
ResourceRequested (p)=0 \cancel attempt 10 acquire more resources
RunningPhase’=Phase(PhaseElect)

LY preempt-phase(p) S:

event
preconditions:
(Running P hase=p)A(Runningf hase # nullphase)
A(RunningPhase # Phase(PhaseElect))
postconditions:
if (ExecMode(p) = normal) then

ExecClock '(p) = ExecClock(p) - (t - ResumeTime(p))

event

else

AbortClock’(p) = AbontClock(p) - (1 - ResumeTime(p))

cvent
:note p is not resource-waiting
RunningPhase’=nullphase

X

resume-phase(p) S:

even!
precondiuons:

(RunningPhase=nuliphase)A(Phase(PhaseElect)=p)
A{Phase(PhaseElect) # nullphase)~n(Mode(PhaseElect)=normal)
A—ResourceWaiting(Phase(PhaseElect))

postconditions:
ResumeTime'(p) =t .,
RunningPhase'=Phase(PhaseElect)

Figure 3-4: Other Phase Operauons Accepted by DASA Scheduling Automaton

activity begins with a ‘request-phase’ operation that declares its needs for its initial computatonal phase.
Subsequent 'request-phase’ events mark the end of one computatonal phase and the beginning of another.
A final 'request-phase’ operation denotes the completion of the activity's last computational phase. Of

course, simple activities may consist of only one or possibly a few computational phases.

The precondition for accepting a ‘request-phase’ operation is simply true. That is, a ‘request-phase’
operation can be accepted at any ume under any Circumstances. This arrangement allows new phases to
amve at any instant. thus permitting activities to be submitted to the automaton asynchronously, just as
they would be if they were initiated in response to interrupts.

The two arguments associated with each ‘request-phase’ event serve to specify the anucipated needs of
the new computational phase: (1) v, the time-value funcuon defining the value to the apphcation of

Scheduling Dependent Real-Time Activities Cc49

L ent request(r)p.

preconditions:
(Running Phase=p)A(RunningPhase # nullphase)
postconditions:
ExecClock’(p) = ExecClock(p) - (t,,.,, - ResumeTime(p))
ResourceRequested (p)=r ndicate p is resource-waiting
PhaseElect’=SelectPhase(PhaseList)
RunningPhase=nuliphase .give up processor until ‘grant’ed resource

L X grani(p, r, undotime(r)) §:

event
preconditions:
(RunningPhase=nullphase)A(Phase(PhaseElect)=p)A(r# nullresource)
A(ResourceRequested(Phase(PhaseElect))=r)
A(Mode(PhaseElect)=normal)
postconditions:
ResumeTime’(p) = .,
AbortClock’(p) = AbortClock(p) + undotime(r)
RunningPhase’=Phase(PhaseElect)
Owner'(r)=p sindicate 'p’ is owner of resource
ResourceRequested (p)=4
ResourcesHeld (p)=ResoucesHeld.r

Figure 3-5: Resource Operations Accepted by DASA Scheduling Automaton

completing the phase at any instant in time; and (2) ! spected the amount of computation time that would be
expected to execute the phase if there were no contention for shared resources — including the processor.

In addition, there is no indication about the shared resources that will be needed by the phase. This
reflects the belief, explained earlier, that in order to allow a potentially high degree of concurrency, it may
often be pecessary to use techniques that preclude the exact knowledge of which resources will be needed
by a computational phase.

The request-phase’ operation has the longest set of postconditions of any of the operations accepted by
the DASA Scheduling Automaton. This is due in large part to the fact that the postconditions handle the
conclusion of one computational phase and the initiation of another. If the currently executing phase issues
the ‘request-nhase’ operation, then the operation marks a transition between phases. In that case, the value
accrued by completing the phase is added to the running 1otal for the application, and any shared resources
held by the activity are released. (Note that if the activity had been aborling the computational phase, no
value would be gained by completing the phase, since that simply represents the completion of the abort.)

If the activity that issued the 'request-phase’ operation was not executing at that time. then i1t is a new
activity. There is no previous phase to handle in that case.

Whether or not the computational phase is the first for the activity, the ‘request-phasc’ postconditions

C-50 Scheduling Dependent Real-Time Activities

dictate that the time-value function and expected compute time parameter are associated with the new
phase. The expected compute ime parameter is used to irutialize a virtual clock, called ExecClock. This
clock indicates the amount of time required to complete the current phase for a given actvity.

Other state components are altered as well. AbortClock is similar to ExecClock — it indicates the amount
of ume required to abort the current phase of an activity. Each ume a new shared resource is acquired
duning a phase. AbortClock is increased by a resource-specific amount of time. Iniually, it takes no time to
abort a computatonal phase since nothing has been done yet and no shared resources have been acquired.
Furthermore, ExecMode for the new phase is ‘normal’, not ‘abort’.

It is possible that the ‘request-phase’ event may signal the completion of the final phase of an activity. In

that case. the required computauon ume, ! o 15 declared to be zero — that is, no more computational

expecte.
cvcles are needed for the activity.

If the ‘request-phase’ event does mark the completion of processing for an activity. then the phase is
removed from the list of known phases. PhaseList. Otherwise, the phase ts a member of PhaseList.

Finally, SelectPhase(} is consulted to decide which phase should be executed now. Furthermore, if the
currently executing activity (RunningPhase) issued the ‘request-phase’ event, it surrenders the processor —
clearing the way to execute the PhaseElect specified by SelectPhase(). (Note that this really has no effect
if PhaseElect is pan of the currently executing activity. In that case, wlui¢ the processor will nominaily
begin executing the nullphase, it will actually resume execution of the PhaseElect immediately. The
transition (o the nu/lphase is only a convenieace in terms of modeling the automaton. After reviewing the
other scheduling events accepted by the DASA Scheduling Automaton, the conventuon employed
throughout to mark potential changes in execution due to-a preemption, abortion, or unsatisfiable request
should be clear.)

Abort-Phase. As modeled, phases are aborted only as a result of a decision by the scheduling function,
SelectPhase()*!.

By convention, each time the executing acuvity, RunningPhase. makes a new request to either begin a
new phase or t0 acquire a new shared resource — necessitating a scheduling decision — the activity gives
up the processor. That is. as a postcondition for accepting one of these requests, RunningPhase is set to be
nullphase. This is done to meet the preconditions to accept either an "abort-phase’ or a ‘resume-phase’
event. Once the processor is idle, then if the execution mode of PhaseElect is "abort’, then an "abort-phase’
event can be accepted by the DASA Scheduling Automaton.

The postconditions for this event make sure that the phase is aborting, note the ame at which execution

*'Thus should not be viewed as precluding the possibiiity of an activity aborting a phase autonomousty ~— perhaps due to a failure
withun a ransaction. Rather, the model can easily be extended to accommodate that possibility: If the executing acuvity decides to
abort the current phase, 1t 1ssues an “abort-self event. This event changes the execution mode of the phase 1o “abont’. consults
SelectPhase() w determine what to run next. and gives up the processor. When the scheduler sclected that phase to begin its abort
processing. it would issue an “abort-phase” event, and processing would continue as described above.

Scheduling Dependens Real-Time Activities C-s1

resumed. cancel any outstanding requests for shared resources (since no new resources must be acquired to

undo whatever was done to those previously acquired). and designate the new executing phase.

Preempt-Phase. Asindicated by 1ts precondition. the scheduler issues a ‘preempt-phase’ event if the
processor 1s execuung come phase other than the PhaseElect or the nullphase. I response, the current
RunningFPhase 1s suspended. its execution clock (either ExecClock or AbortClock, depending on the
execution modet 1s updated to reflect the true time left to free the shared resources held by the phase. and
the processor 1s leftidle.

Of course, the processor will probably not remain idle for long since either an "abort-phase’, a 'resume-
phase’, or a "grant’ event will be issued to execute another phase: (1) an "abort-phase’ event is issued for a
phase that is being aborted. (2) 2 'resume-phase” event is issued for a phase that is executing normally, but
1s not waiung for a resource (that 1s. 1t ts a previously preempted phase): and (3) a "grant’ event 1s issued
for a phase that is executing nommally and is waiting for access to a shared resource. All three of these
scheduling events require that the processor be idle before they dispatch the next phase. (Along with the
‘preempt-phase’ event, the ‘request-phase’ and ‘request’ events also leave the processor idle when
approprnate to set the stage for these phase-dispatching events.)

Resume-Phase. The 'resume-phase’ event resumes the execution of a previously preempted phase. The
processor must be idle before a ‘resume-phase’ event can be accepted by the DASA Scheduling
Automaton, and the phase resumed must be executing normally — as opposed to aborting — and must not

be waiting on access to a shared resource.

The postconditions for the acceptance of a ‘resume-phase” event note the time at which execution of the
phase resumed and assign the processor to execute the pbase.

Request. A ‘request’ event signals that the currently executing phase wishes 1o access a shared resource.
As denoted by the event's preconditions, such a request can be made at any time while the phase is
executing on the processor.

After accepting a 'request’ event, the postconditions for the event update the requesung phase's execution
clock to indicate the exact ame left to complete the phase, record the resource that has been requested by
the phase, select the next phase to be executed (possibly the requesting phase), and remove the requesting
phase from the processor.

It should be understood that the decision to suspend the requesung phase’s execution is only made to
provide a simple, coherent formal model. not 10 suggest the actual design of an implementadon of the
DASA algorithm. Nonce, for example, that in the formal model, it is quite possible that a phase could
request a resource that is currently available, give up the processor, and immediately be reassigned the
processor as the result of a ’'grant’ event. This is perfecly fine in the model, but an efficient
implementation of the algorithm should decide whether the processor should actually be tumed over to
another phase before ever suspending execution of the ¢ 'rrent phase.

C-52 Scheduling Dependent Real-Time Activities

Grant. The "grant’ scheduiing event assigns the processor, which must be idle, to execute a phase that
has been blocked awaiting access to a shared resource. The phase assigned 10 execute has been previously
selected and is designated PhaseElect.

Once the 'grant’ event has been accepted by the DASA Scheduling Automaton, the postconditions
associated with that event record the time at which the phase is granted the resource, adjusts the AbortClock
to indicate the increment in work that is required to undo actions on the newly acquired shared resource,
manipulates vanous relations to show that the resource now belongs to the designated phase, and starts the
processor executing that phase.

Although there are 'request’ and "grant’ events, there is no explicit ‘release’ event. This is due to the
model of computation that has been adopted. Since all activities are composed of a sequence of
computational phases and all shared resources that are acquired during a phase are released at the
completon of the phase, there is no need for such an event. Rather, an implicit retease of these resources is
performed as part of the 'request-phase’ event, which, among other things, denotes the completion of a
phase (as described above).

3.2.1.3. 'SelectPhase’ Function for DASA Automaton

The function 'SelectPhase()’ embodics the DASA scheduling algorithm. As shown in Section 3.2.1.2,
SelectPhase() is evaluated each time a "request-phase’ or a ‘request’ event is encountered. In Figure 3-6,
SelectPhase() is formally defined as a mathematcal function. Since this definiton looks quite different
than the bnef procedural definition offered in Secuon 3.1.3, a few comments are in order to explain the
utility of this format and its organization.

The algonithm is desnbed as a mathematical function for a few reasons. First and foremost, it is a concise
and precise notation. But it also is more expressive in some ways than procedural definitions. Specifically,
this mathematical format is capable of expressing the sequencial nature of a set of operations — by using
functional composition, for example, where each function corresponds to one of the sequential operations.
At the same time, this mathematcal format can also express the nondeterminism that is present in the
algonthm definition. For instance, the order in which the elements in a list are examined may or may not
be important. When the order is important, there is a specific method to describe the order. Thus is said to
be deterministic, in that there is only one correct order. When the order is unimportant, any order will do;
and so this case is said to be nondeterministic. A typical procedural definition cannot readily capture this
nondeterminism. Such a definition would usually have to specify some ordering, even if the ordering was

not critical.

The function 'SelectPhase()’, when given a list of phases, selects the next phase to run and specifies its
execution mode (either 'normal’ or "ubort’). Informally, the dcfinition shown for "SelectPhase()’ in Figure
3-6 determines a set of phases that can feasibly meet their ime constraints given all of the information that
is currently known about them. It then selects one of the phases from this set that must be done by the
earliest deadline and designates it as the next phase that the processor should execute.

Scheduling Dependen: Real-Time Activities C-53

All of = phases in the phase list P that was passed to SelectPhase() are considered when constructng the
list of phases that can feasibly execute. Also, as each phase is examined in turn. any dependency that
prevents it from executing immediately are noted and resolved by indicating those other activiues that must

precede it in any schedule — either completing or abortng their current phases.

To see how the definiton actually specifies the desired behavior, a closer look is necessary. Towards that
end, consider constructing the definition from the bortom up. While a few of the functions appearing in the
definiuon have already been discussed brigfly. others are totally new

The following descriptions constitute an informal defininon of the functions compnsing SelectPhase!).
Often only the "main” or "nomal” case value will be discussed for a function. even though its definstion
includes a number of other cases as well"~. Tius is because the other cases usually handle degenerate

situations that anse as a result of the recursive nature of some of the function detininons.

To start, remember that a few basic functons were described in Section 2.3.1. They include Deadline()
and Val() and are used in the definitions that follow as basic building blocks.

Also remember that SelectPhase() is a function that is evaluated within the context of the DASA
scheduling automaton. As such, it has access to all of the state components of the automaton, which in tum
provides acces™ to all of the status information for each phase in the system. Furthermore. since
SelectPhase() is always evaluated as a result of accepung a scheduling operauon, the ¢ that appears 1o

oent

the formal defimtion refers to the tmestamp forthe 3 .4 .o cvent

With that background in mind. v . .an begin to examine the formal defintion of SelectPhase() in eamnest.
Consider first the set of functions that form the dependency lists and evaluate the potenual value densities
of all of the phases in the system.

“he function 'Dep()’, evaluated for a specified phase, retumns as its value the phase that is currently
preventing the specified phase from executing (due to a dependency). If the phase 1s ready to execute
immediately, then the ‘nullphase” is the value of 'Dep(). Otherwise, the phase has requested a shared
resource and is dependent on the owner of that resource — that 1s the phase that currently holds the shared
resource — if there is one. The phase holding the resource must relinquish it before the dependent phase

can cofitinue execution.

The resource can be relinquished 1n one of two ways: either the phase can complete 1ts normal course of
execution or it can be aborted. Both of these altematives take time=, and the DASA algonthm attempts to
minimize the amount of ime waiting for the resource. So DASA completes the phase unless it 1s faster o

abort :t

[T .
“Which case 1s 1o be used to evaluate the function typically depends on the vajue of one or mare arguments {o the function

BAs was pointed out carher, a phase that has bern aboned does not instantancousiy retum the shared resources atlocaied o 1t to the
svstem. Rather, the shared resources must be placed inlo a meaningtul. o coptabiz, sate. amd (possihiy) consistent state pnor 1o they
release. [t s the processing that puts the shared msources into these acerntabic states that consumes ume after an abort has been
1ssued for the phase.

C-54

Scheduling Dependent Real-Time Activities

SelectPhase(P) =

pickone(muscﬁm’shb_v(DLﬁm(mpplist).thed“,‘d(l’))),

where
mpplist =tobescheduled(P _,4F))

pickone(MPP) =
<normal.p>,
<abort p>,

if <normal.p>€ MPPADep(p)=nullphuse
if <abort p>e MPP
A= (3gX<normal.qg>e MPP
ADep(g)=nullphase)

<normal,nullphase>, otherwise
DLy, (MPP)=
oo, ifMPP=6
Deadline{p) | (<normal p>€ MPP)
AV gX<normal.q> € MPP — Deadline(q) 2 Deadline(p)),
otherwise
PJchcduled(P) =
o, if P=6
P reasivie P scheduied P={P 1P, ifp€ PryaphP)
Pfea.nblz(P) =
. if P=6
P, if feasible(P)
P reasividlP={p]). wherepe P, p AP), otherwise
PreaspAP) =
6, if P=¢
{plpe P)
AV q)Xge P (PVD(p)SPVD(q))
A(PVD(p)=PVD(q) —> ExecClock(p) < ExecClock{g)))).
otherwise
tobescheduled(P) =
o, if P=o
{<normal p>} U dependencylist(p) w tobescheduled(P-{p}).
ifpe P

dependenc!ist(p) =
o,
dependencylist(Dep(p)) v {<normal.D

{<abort.Dep(p)>},

if Dep(p)=nullphase

ep(p)>}.
if AbortClock(Dep(p)) 2 ExecClock(Dep(p))
otherwise

Figure 3-6: Functional Form of DASA Algonthm

Scheduling Dependent Real-Time Activities C-55

mustcompleteby(1.P) =

0. iﬁqnem
{p | [<normal p> € tobescheduled(P)ADeadline(p)<t]}.
otherwise
mustfinishby(1.P) =
o, ifP=ovi<t, v mustcompleteby(1.P)=0

reduce(t, P, { <normal,p>}dependencylist(pyomustfinishby(1.P~{p})).
if p € mustcompleteby(t.P)

reduce(t.P.MPP) =
reduce(t.P MPP—{<abort p>}). if <abort p> <normal,p>¢€ MPP
r<abort,p>& mustfinishbv(t” P)
MPP, otherwise

feasible(P) =true iff (V1){(+21,,..) > timerequiredbv(mustfinishby(1.P)) < (t—tamu)]
timerequiredby(MPP) =
0, MPP=6
ExecClock(p)+timerequiredby(MPP~{ <normal,p>}),
if <cnormal,p>€ MPP
AbortClock(p)+timerequiredby(MPP—{ <abortp>}),
if <abort p>€ MPP

PYD(p)= O, if ExecMode(p)=abort
Val(py+PV(Dep(p)) .
. otherwise

ExecClock(p)+PI(Dep(p))

PV(p) = 0, if p=nuliphase
0, if AbortClockip} < ExecClock(p)
Val(p)+PV(Depip)), otherwise

PT(p)= 0. if p=nullphase
AbortClock(p). if AbortClock(p) < ExecClock(p)
ExecClockip)+PT(Dep(p)), otherwise

Dep(p) = nullphase, if ResourceRequested(p)=nullresource
Owner(ResourceRequested(p)). otherwise

Figure 3-6: Functional Form of DASA Algonthm, continued

C-56 Scheduling Dependent Real-Time Activities

The funcuon ‘dependencylist()’ uses the information supplied by ‘Dep()’ about the dependencies of
individual phases to construct a list that includes all of the phases that must execute before a specified
phase. 'Dependencylist()’ also specifies the execution mode for each of the phases that must be executed
pnor to the specified phase. Therefore, the dependency list 1s actually a sct of mode-phase pairs of the
form <mode,phase>. It is in this function that the decision to minimize the length of ume to remove
dependencies is implemented.

The definition of the function is recursive. It imtally examines the phase, p. that was given as its
argument. If p is not dependent on any other phase, then its dependency list is empty. Otherwise, 1t will be
non-empty. Specifically, if it is faster to abont the phase on which p uepends. then the dependency list will
have only one member: <abort.Dep(p)>. Allernatively, if it is at least as fast to complete the normal
execution of the phase on which p depends. then p’s dependency list will be constructed by adding
<normal Dep(p)> to the dependency list of Dep(p).

Once a dependency list has been determined for a phase, it is possible to evaluate the potential value
density for that phase. This is done by the functon PVD(), which employs two auxiliary funcuons, PV{)
and PT(). These functions are sunilar to those discussed earlier in this chapter, in Sccgon 3.1.2. They total
the value that may be accrued and the execution tme that 1s required jointly by the given phase and all of
the phases 1n its dependency list. (Note that aborting a phase requires time but yields no value durectly.)
These totals are then used to determine the potential value density for the specified phase.

The function P,) examines a set of phases and retumns the subset of phases that have the lowest
potenual value. In case more than one phase has the same (lowest) potential value density, the phase or
phases thai will consume the least execution tme is retumed. This choice is made because., when
considering two phases with the same PVD, the phase that executes longer will obtain a higher value than
the one that runs shorter since value is the product of PVD and execution time.

Another group of functions determine the amount of time required to carry out a specified set of
executions and aborts over all of the critcal ume intervals, thereby allowing the feasibility of the specified
computations to be ascertained. So, for instance:

o timerequiredby() —— given a set of mode-phase pairs, this function determines the total
execution time required to carry out all of the specified computations;

e mustcompleteby() — given a time and a set of phases, this function identifies those phases that
must complete execution by the specified time;

e mustfinishby() — given a time and a set of phases, this function identfies all of the normal
executions and abortions that must finish by the specified time; whereas, mustcompletebv()
identified those phases that had to complete their normal exccutions by the specified ume,
mustfinishby() adds to that group all of the other work that must be done in order to remove
any exisung dependencies that might prevent those phases from executing immediately; also
notice that this funcuon uses another functon, reduce(), to eliminate unnecessary aborts from
the resultant list;

e reduce() — this function eliminates unnecessary aberts by noticing cases wlicre the same

Scheduling Dependent Real-Time Activities Cc-57

phase is being both completed and aborted®*, but the completion must be donc prior to the
abort due to the dependencies currently in effect: of course, there is no need to abort a phase
once it has completed:

e feasible() — given a set of phases, this function determines whether all of the phases in the set,
along with all of the other computauons on which they depend. can meet their deadlines: for a
schedule to be feasible, at every point in ame the total amount of ime required to complete the
computations that must be done by that time must never exceed the actual ume remaining until
that ime.

With this set of functions to use as building blocks, it is possible to descnbe at a fairly high level how to
select the phase that should execute next.

A set of phases that can be feasibly run (given current knowledge of requirements and resources) is
constructed by examining each existing phase ordered by PVD, starting with the phase with the highest
PVD. The functions P, 4. ;. and meib,‘() construct this set=. Given a set of N phases, P__, ... L)
will first (recursively) determine which of the N—1 phases with the greatest potential value may feasibly be
executed. P, 4.1, using me‘-b,(() and ultimately feasible(), then determines if the phase with the least
potential value can feasibly be added to the set. If so, itis.

Once P, 4...) has identified which phases can be completed successfully, it is fairly straightforward to
determine which phase should be executed first. The auxiliary function DLg

irst

() specifies the earliest
deadline that must be met by those phases that can compiete execution. That information, along with the
set of phases to be completed. is once again passed to the function mustfinishby() to determine all of the
work that must be done by the earliest deadline. And finally, pickone() selects a mode-phase pair from that
set to execute first. pickone() always prefers to complete a phase normally if possible, but if that cannot be
done, it will initiate (or continue) the abortion of a phase.

3.2.2. Observations on the Definition

Several observations can be made now that the formal definition af the DASA Scheduling Automaton has

been presented in full. Each of the following sections focus on an interesting observation.

3.2.2.1. Manifestation of Desirable Preperties

Section 3.1.1 listed five desirable properties that the DASA algorithm should possess. Now that the

algorithm has been presented in some depth, those properties should be reviewed again:

1. explicidy account for dependencies — this has been accomplished. The definition of
SelectPhase() was described from the bottom up, and the first thing that was done in
considering any phase was to determine those phases that it depends on (1ts dependency list)
and the aggregate value of this group of phases to the application.

3411 is not unexpected that both the completion and the abortion of a single phase will sometimes be executed. In the expected case,
the phase 1s aboried in order to allow some other phasc, with a tighter deadline, to execute. Later, the abored phase can be restaned
and completed normally, still meeting 1ts ume constraint.

BNote that the functions that are named P () all represent sets of phases.

C-58

Scheduling Dependent Real-Time Activities

. minimize effort — this property refers to the amount of effort required to enable a phase to be
ready to execute. The DASA algorithm has minimized this effort by minimizing the time
needed to eliminate each of the dependencies for that phase: if it is quicker to abort a phase
than it is to execute it to completion, than it is aborted. This minimizes a latency. of sorts, at
the possible cost of later reexecuting phases that have been aborted.

. maximize returmvbenefit — the use of the potental value density addresses this concem
directly. As outlined in Secton 3.1.1, by adding those phase groups (a phase along with the
phases that comprise its dependency list) with the highest PVD to the schedule first, the
algonthm guarantees that no other phase group can attain a higher aggregate value consuming
the same number of cycles, based on current knowledge.

.inaximize the chance of meeting deadlines — this property has been met through the
placement of phases in the temative schedule that is recursively constructed by SelectPhase().
The key observation is that, although phases are considered for addition to the tentative
schedule in order of decreasing PVD, they are actually added to the schedule in an order that
is determined only by the deadlines of the phases betng placed and their dependencies: stated
informally, a phase that is to be executed to completion is inserted in the schedule according
1o its deadline, unless that time is too late to allow a scheduled phase that depends on it to
complete in ume. In the latter case, it inherits the latest deadline that will allow the dependent
phase to meet its deadline.

. globally optimize schedule — the funcuon reduce() applies some global reductions to the
tentative schedule that is recursively constructed by SelectPhase(). This is necessary since
each phase is added to the schedule, along with its dependencies, independently of any other
phases that may already be part of the schedule. As a result, it is possible that the aboruon of
a phase may be scheduled after the same phase’s completon. Although this would have no
real effect on the sequence of phases executed — after the phase bad completed, it would
release all of the shared resources it was holding so that the next evaluation of SelectPhase()
would have no dependency requiring its abortion — it is important to eliminate it from the
tentative schedule so that the most realistic estimate of processor cycle demands can be
maintained.

3.2.2.2. Nondeterminism in Definition

As was mentioned in Section 3.2.1.3, a mathematical form was chosen for the function definitions in pan

to allow orderings 10 be specified when they are important, and to be unspecified otherwise.

definitions of SelectPhase() and its subsidiary functions provide examples of each:
¢ Order matters when determining which phases to add to the tentative schedule. The function

P hedwed) SElEcts the phase to be removed from the set P it was given according to the PVDs
and execution clocks of the individuals phases in P. (Even here there is some nondeterminism,
since it is possible — though probably unlikely — for more than one phase to belong to the set
P, .spr), With each of these phases having the same PVD and execution clock value.)

o Order does not matter when the set of mode-phase pairs that must be in a schedule in order to

successfully complete a given set of phases is constructed. This construction is carmied out by
the function tobescheduled(). and in this case, the phase to be removed from the set P for the
next recursive call to tobescheduled() 1s to1ally unspecified — any element of P will do.

The

There are other examples for each of these cases in the DASA definition, but these serve to illustrate the

ability of the notation to capture the essential aspects of ordering without imposing unnecessary constraints.

This clarity may be of considerable benefit when weighing the correctness of alternative implementations

of the algorithm that use different orderings for various evaluations.

Scheduling Dependern: Real-Time Activities C-59

3.2.2.3. Explicit Appearance of Time

Time doesn’t explicitly appear in many of the individual function defirutions. This may be unexpected
for an environment where ime — and meeung time constraints — is a central concem. Of necessity, ime
explicitly plays a role in testing the feasibility of executing groups of phases. And while this testng occurs
throughtout the evaluauon of SelectPhase(). references to time seem infrequent since phases are added to
the tentauve schedule according to their potental value density, not according to the urgency of their ime
constraints.

3.3. Scheduling Example Revisited

Now that the scheduling algorithm has been presented, it is possible to reconsider the scheduling example
discussed in Section 1.3. Once again, the problem is to schedule phases p,. p,. and p_ so as to meet their
ume constraints, if possible. In fact, it 1s possible, and this is shown by the bottom execution profile in
Figure 3-7. Notice that phase p, is aborted during the course of exccution. thus allowing phase p, to meet
its deadline. Tthus necessitates the reexecution of the start of phase p_ at a later time.

The top of Figure 3-7 shows the execution profile for a scheduler that is identical to DASA. except that it
cannot abornt phases. It, too. meets all of the deadlines. while consuming fewer cycles than DASA in the
process. However, it must tolerate a longer delay between the time that it determines that a given phase
should be executed and the ume at which that phase may actually begin execution due to existing
dependencies. This variant of the DASA algonthm is shown only as a reference point. At this point, it is
not anuicipated that it will studied in significant depth as part of the proposed thesis research.

C-60 Scheduling Dependent Real-Time Activities

Running B _— —_—
Phase Fe : : DASA Scheduler
fa —— ; — (without Aborts)
P N I t
r3. 3 I3 .. 3 Tl
Running | DASA Scheduler
Phase e v '
I : (with Aborts)
a - . —_————r—
o . \ :
: '\\ . : 3

Figure 3-7: Executon Profiles for DASA Scheduler with and without Aborts

Scheduling Dependent Real-Time Activities C-61

Chapter 4

Analytic Results

This chapter presents a set of analytic results that argue for the benefits of the DASA algonithm. First. a
number of high-level requirements that real-ume scheduling algonthms must possess is discussed. Then a
strategy for demonstrating that the DASA scheduling algonthm possess those properties 1s outlined,
followed by a set of proofs conforming to that strategy. The final secuon of the chapier discusses various
interesting behaviors that the DASA algonithm may demonstrate, which are revealed by its formal
descripuon.

4.1. Requirements for Scheduling Algorithms

Ay pracucal solution to the problem of scheduling while taking dependencics into account must be
correct, valuable, and tractable.

The solution must be correct. Specifically, any scheduling decisions that are made must observe all of
the known dependencies. Therefore, for instance, any activity that is selected to execute must be able to
execute at that point in time. The solution must also ¢chey the concurrency control rules of the model. in
particular, for the model presented here, mutually exclusive access to the shared resources must be

guaranteed.

The solution must be valuable. When cast in the computational model descnibed above, this requirement
simply means that the schedules dictated by the scheduler must yicld good values relative to other
scheduling algonthms. Notuce that this is partally a comment on the scheduler’s behavior in nommal
situations and partally a comment on its behavior in overload situations. In nommal (non-overload)
situations, the ordening of activities is cnitical and many schedulers will not order them appropriately, even
when there are sufficient processor cycles present to satsfy all demands; in overload situations, the
system/application should display a graceful degradation of function®®. Both of these tvpes of situation are
accurately gauged by the value metric previously introduced.

Finally, the soluton must be computationally tractable‘efficient. That is, the soluion must consume, at
worst, an amount of time and space that is polynomial in the problem size — in this case, the problem’s

size 1s the number of phases under consideration by the scheduler.

2% ven schedulers that take dependencies wnto account may handie overload suuatons differently, resutung 1 different scheduling
decisions, and hence differeat values, for executing the apphicauon.

C-62 Scheduling Dependent Real-Time Activities
4.2. Strategy for Demonstrating Requirement Satisfaction

Analytic proofs have been constructed to demonstrate the correctness, value, and tractability of the DasA
algonthm. These proofs are contained in Section 4.3.

To demonstrate correcmess, it is shown that the DasA algorithm respects any existing dependencies
among phases and makes legal selections. This is accomplished by demonstrating that any phase that DASA
selects for execution is capable of executing immediately. That is. it is shown that DASA will either (1)
select a phase that is ready to run (i.e., is not blocked), or (2) designate that a phase is to be aborted. which
can be executed immediately for any phase, blocked or ready to run. This proof is presented in Section
43.1.

To demonstrate value, proofs serve to illustrate that DAsA performs well when compared to other
scheduling algorithms in appropriate situations. In particular, when there are no dependency
considerations, DASA can be compared to a number of well-known algorithms. In fact. it is shown that, if
there are no overload conditions, the DASA automaton will accept the same histories as an automaton that
accepts histonies conforming to Locke's Best Effort Scheduling Algorithm (LBESA). Not coincidentally,
this is sumply a deadline-ordered history. In overload situations, it is demonstrated that the DASA
automnaton will accept histories that the LBESA automaton will not accept, and that these histories may have
a higher value than any history that the LBESA automaton may accept involving the same phases with the
same scheduling parameters. These proofs are presented in Section 4.3.2.

To demonstrate tractability, a procedural version of the DASA algorithm has been developed, and its
complexity has been analyzed to prove that the time and space requirements of the algorithm are indeed
polynomial in problem size — that is, that the time and space required to execute the algorithm are each
proportional to the number of active phases raised to some polynomial power. Both the procedural version
of the DASA algonithm and the derivation of its space and time properties are presented in Section 4.3.3.

4.3. Proofs of Properties

The proofs in the sections that follow demonstrate propertics of the DASA scheduling algorithm according
to the strategy outlined in the preceding section. Each section contains all of the proofs corresponding to a
single property of concern. In addition to the proofs themselves, other material that must be developed to
complete the proofs is also presented. For exampie, in Section 4.3.2.1, a derivation of another scheduling
automaton is presented. This automaton is subsequently used in proofs to assess the utility of the DASA
algonthm.

Scheduling Dependent Real-Time Activities C-63
4.3.1. Algorithm Correctness

There 1s only one proof in this section. It demonstrates that DASA respects all exisung dependencies
among phases by showing that the phase selected for execution can execute immediately. Therefore, no
phase is ever selected for normal execution if it is dependent on some other execution. Of course, a phase
that s blocked due to a dependency could be selected to abon, since it can abort at any time regardless of
dependency considerauons.

4.3.1.1. Proof: Selected Phases May Execute Immediately

Theorem 1: Given PhaselList, the set of phases known to the DASA automaton, prove that the phase
selected for execution, PhaseElect, is eligble to run at that point

Proof. In every case in the DASA automaton. PhaseElect. the phase selected for execution, is determined
by evaluating SelectPhase{PhaseList). The function SelectPhase() is defined as:

SelectPhase(P) =
pickone(mus(ﬂnishb_v(DLﬁm(pmph'sl).P“hedu,d(i’))),
where
pmplist stobescheduled(P __, ... AF))

and pickone() is defined as.

pickone(PMP) =
<ner alp>, if <normal p>€ PMP
ADep(p)=nullphase
<abort,p>, if <abort p>€ PMP
A—~(3qg)(<normal.g>€ PMP
rDep(q)=nullphase)
<normal.nuliphase>, otherwise

Notice that pickone() will retumn one of three values:
e <normal p>, for some phase p — this occurs only when Dep(p) = nullphase: in that case, p is
ready to run by definition;

e <abortp>. for some phase p — any phase may be aborted at any ume, even if it had
previously been waiting to access a shared resource; so once again, by defimuon, p is ready to
run,

e <normal.nullphase> — this desi_;nates an idling condition, which is always possible, so

-

nullphase is trivially ready to run*’.

In each case, PhaseElect 1s assigned a phase/mode pair in which the phase is ready to run.

| EndOfProof

*"Notice that <normal nullphase> s returned only in the case that there are no phases ready to run wn either their normal mode or
their abort mode

C-64 Scheduling Dependent Real-Time Activities
4.3.2. Algorithm Value

Since most scheduling algorithms do not uulize dependency information, it is difficult to make fair
comparisons between their performance and that of DAsSA when dependencies are involved. Therefore, this
section will compare DASA to an another algorithm (LBESA) in the absence of any dependencies.

Since LBESA was shown in to outperform a number of standard algonthms in a range of situatnons. a
favorable comparison with LBESA will demonstrate that DASA behaves well.

To that end, the two proofs presented in this section demonstrate that the DASA algorithm performs well
when compared 10 the LBESA algorithm. They consider a set of activities that are independent of cne

another, each of which is described by a time-value function that is a step function. They show:

1. If there is no overload, then both DASA and LBESA yield identical expected value to the
applicauon.

2. Under overload, DASA may schedule more activities than LBESA, viclding a greater expected
value than LBESA.

Before presenting the two proofs, the next two sections develop the formal scheduling automata that they
will use. First, Section 4.3.2.1 presents the LBESA Scheduling Automaton. Then Section 4.3.2.2 presents a
scheduling automaton corresponding to the DASA algonithm when there are no dependencies to consider.

4.3.2.1. LBESA Scheduling Automaton

The LBESA Scheduling Automaton is cast using the General Scheduling Automaton Framework descnbed
in Section 2.3.2. Once again, each scheduling decision is made based on the set of phases currently known

to the automaton: {py, py Py --- |-

LBESA Automaton State Components. The state components associated with the LBESA Scheduling

Automaton are presented in Figure 4-1. They are simply the General State Components that every
scheduling automaton contains, and they were described in detail in Section 2.3.2.9.

Operations Accepted by LBESA Automaton. The operations accepted by the LBESA automaton and their

preconditions and postconditions are shown n Figure 4-2.

These are a somewhat simpler version of those presented in Section 3.2.1.2 for the DASA Scheduling
Automaton. Most notably, there are no operations for dealing with resources — in particular, there are no
‘request’ and ‘grant’ operations. (Of course. in keeping with the General Scheduling Automaton
Framework, these operations actually exist for the LBESA Scheduling Automaton. However, their
preconditions are defined to be false, indicating that events with these operauons can never be accepted by
the LBESA Scheduling Automaton.) In addition, there are no postconditions for ‘request-phase’ o release

previously acquired resources. and the precondition for ‘resume-phase’ is one term shorer.

The LBESA Scheduling Automaton does not accept 'abont-phase’ operations either. This 1s because the
LBESA scheduling algorithm does not abort activities or phases. Such aborts are not required because the
activities are all assumed to be independent.

Scheduling Dependent Real-Time Activities C-65

General State Components:
e ExecMode' PHASE — MODE (MODE is either 'normal” or “abort™

e ExecClock: PHASE — VIRTUAL-TIME

» AbortClock: PHASE — VIRTUAL-TIME

¢ ResumeTime: PHASE - TIMESTAMP

* Value: PHASE — (TIMESTAMP — VALUE) (iniually Value(t) = 0)
e Total: VALUE (inigally '0")

* RunningPhase: PHASE (initially "nullphase’)

¢ PhaseElect: MODE x PHASE (imitially ‘<normal. nuliphase>")

o PhaseList: list of PHASE (initially '0")

Algorithm-Specific State Components:

e None

Figure 4-1: State Components of LBESA Scheduling Automaton

When activities are not independent. then aborts must be introduced into the model. Notice that this does
not mean that the scheduler must generate abort signals. but rather, that there must be a way to retum
shared resources to acceptable states before allowing other activities to acquire them and 10 retumn the
aborted acuvity to a known state (presumably to handle an abort excepuon) if it is to have any chance at

continuing normal execution.

References to the "AportClock’ state component have been left in the postconditions for the ‘preempt-
phase’ operation merely for convemence wi.en comparing it to another automaton. Since aborts are never
used. the clause that deals with the "AbortClock’ state component will never actually have an effect.

‘SelectPhase’ Functon for LBESA Automaton. The function ‘SclectPhase()’ embodies the LBESA

scheduling algorithm in this scheduling automaton, just as the idenucally-named function had done in the
DASA Scheduling Automaton. Figure 4-3 shows the definition of thus function.

Since Locke never emploved such formalisms in his work, he never provided as rigorous a definition for
his scheduling algorithm as the one shown here. And he cenainly never provided a mathematical function
corresponding to his definiton. As a result, the definition shown here captures Locke’s algorithm in this
framework.

There are a number of ways of defining SelectPhase(). and the one chosen parallels the structure of the
SelectPhase() function for the DASA Scheduling Automaton in order to facilitate compansons between
them.

C-66 Scheduling Dependent Real-Time Activities
o1, .n T€QuUest-phase(v, texpected! P°
precondinons:

true <No preconditions here so that interrupts and other new phases
can occur at any ime>
postconditions:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total' = Total + Value(p)(t,,.,,)
else
:no value for aborted phase
:release the resources acquired during the phase
. involves no action for this automaton
Value'(p) =v
ExecClock'(p) = texpecied
AbontClock'(p) =0
ExecMode'(p) = normal
:note that p 1S not resource-waiting

:make sure p is part of the list of phases, if necessary
if (expected > 0) then
PhaseList’ = PhaseList U {p}
else
PhaseList’ = PhaseList - {p}
PhaseElect’=SelectPhase(PhaseList")
iflp=RunningPhase)then
.give up processor until next ‘resume-phase’
RunningPhase=nullphase
else
.happened under interrupt—leave’Running Phase’alone

® 1, . Dreempt-phase(p) S:

preconditions:
(Running Phase=p)A(RunningPhase # nullphase)
A(RunningPhase # Phase(PhaseElect))
postconditions:
if (ExecMode(p) = nomal) then

ExecClock'(p) = ExecClock(p) - (1 - ResumeTime(p))

evem

else

AbontClock'(p) = AbortClock(p) - (t - ResumeTime(p))

event
.note p is not resource-waiting
RunningPhase’=nullphase

ot resume-phase(p) S:

event
preconditons:
(RunningPhase=nullphase)A(Phase(PhaseElect)=p)
r(Phase(PhaseElect) # nullphase)a(Mode(PhaseElect)=normal)
postconditions:
ResumeTime'(p) =t_, .
RunningPhase’=Phase(PhaseElect)

Figure 4-2: Operations Accepted by LBESA Scheduling Automaton

Scheduling Dependent Real-Time Activities

SelectPhase(P) =
pickone(mustfinishb (DL _(pmplisty P, o0 AP,
where
pmplist =tobescheduled(P__, .. (P))

pickone(PMP) =

<normal.nullphase>. if PMP=06

<normal p> | <normalp>¢€ PMP, otherwise
DLﬁm(PMP) =

oo, if PMP=0

Deadline(p) | (<normal.,p>¢€ PMP)
A(Vg)l<normal.q>€ PMP — Deadlineiq) 2 Deadlinep)),

otherwise
Pschedulcd(P) =
0. if P=¢
P[emtbA't(Pscheduled(P_{p })U(P})- lfp € lelDL(P)
sza.nhle(P) =0. if P=¢
if feasible(P)
Pfea.rib"e(P-lp})- where p € Plea;lPV(P)' otherwise
Paup(F) = 0. ifP=06

{pl(pe PNV q)q€ P— ((Deadline(p) 2 Deadline(q))
A(Deadline{p)=Deadline(q) = PV D{p) < PV'D{(g)))]}.
otherwise

PloaspAP) =0 if P=0
iplpe Py A (NgXge P ((PVD(p)SPVDIiQ))
APVD(p)=PVD(q) = ExecClock(p) < ExecClock(q)))),
otherwise

tobescheduled(P) = {<normalp>|pe P}

mustcompletebv(t.P) =
0, if 1t

event

{plipe PADeadline(p)<:}}, otherwise

mustfinishby(1.P) =
o, if P=ovir<t,
v mustcompleteb{(t P)=0
{<normalp>|pe musicompletebv(t P)}, otherwise
Sfeasible(P) = true fff (V1)[{1>1) timerequiredby(mustfinishby(t.P)) < (t—t

~ evens

timerequiredby(PMP) =
0. if PMP=0
ExecClockipi+timerequiredby(PMP—{<normal p>}). if <normalp>e PMP

Val(p)

P"D(p) = "D(p) = Bm

everu)]

Figure 4-3: Functional Form of LBESA Algorithm

C-68 Scheduling Dependent Reul-Time Activities

Despite tne degree to which the effort to cast these functions in the same form succeeded. there are still
substantial differences between the two functions. The most important of these is the order in which phases
are added to the tentative schedule by the two algonthms. Thus difference is seen n the P, ..
subsidiary function of each defimition. LBESA adds phases to the tentative schedule in deadline order,
nearest deadline first. DASA, on the other hand, adds phases to the tentative schedule in order of decreasing

potental value density.

In the eveat that a tentative schedule is not feasible, both algorithms (effectively) remove phases from the
tentative schedule in order of increasing value density or potential value density, respectively. The fact that
LBESA adds phases to the schedule based on one attribute and sheds phases based on another. while DASA
uses a single atnbute for both purposes, causes the algonthms to make different scheduling decisions
under certain circumstances. This leads directly to the fact that, under overload, DASA can attain greater

value for an application than LBESA can, as is shown in Section 4.3.2.4.

Locke was silent on some details concerning his algonithm, such as which phase should be selected if two
or more phases shared the nearest deadline in a schedule or which phase to shed 1f two or more phases had
a common value density that was lower than that of all of the others phases in the tentative schedule.
Whenever possible, these details have been resolved in the manner that seemed to make the most sense.
For example, when two or more phases are characterized by the same value density, the phase requring the
least computation ume is deemed to be less valuable than the others since its contribuuon to the overall
value of the application is a product of value density times required computation ume. If two or more
phases share the same value density and the same required computaton time, then any of the phases may
be chosen.

43.2.2. DASAND Scheduling Automaton

The DASA/ND® Scheduling Automaton embodies the simplifications to the DASA Scheduling Automaton
that can be made when there are no dependency issues to consider. The denvaudon of this simplified
automaton appears in Appendix B. For the sake of convenience, the resulting automaton is presented in
this section.

As before, each scheduling decision is made based on the set of phases currently known to the automaton
and c'=signated as the set {p,, p,, py ... |-

DASA/ND Automaton State Components. The state components associated with the DASA/ND scheduling

automaton are presented in Figure 4-4. Since the algonthm-specific state components of the DASA
Scheduling Automaton are all used to handle resources. they have been omitted 1n the DASAND Scheduling
Automaton, leaving only the General State Components found in every scheduling automaton. (See
Section2.3.2.9))

*basaND stands for DAsA/No Dependencies.

Scheduling Dependent Real-Time Activities C-69

General State Components:
o ExecMode: PHASE - MODE (MODE is either ‘normal” or "abort’)

e ExecClock: PHASE — VIRTUAL-TIME

¢ AbortClock: PHASE — VIRTUAL-TIME

¢ ResumeTime: PHASE —» TIMESTAMP

¢ Value: PHASE — (TIMESTAMP — VALUE) (inidally Value(t) =0
» Total: VALUE (imiually '0")

o RunningPhase: PHASE (initially 'nullphase)

¢ PhaseElect: MODE x PHASE (iniually ‘<normal. nullphase>"}

e PhaseL.ist: list of PHASE (initially '¢")

Algorithm-Specific State Components:

e None

Figure 4-4: Stawe Components of DASA/NL Scheduling Automaton

Operations Accepted by DASA/ND Automaton. The operations recognized by the DasSAND Scheduling

Automaton and their preconditions and postconditions are shown in Figure 4-5.

Once again, these are simpler than those shon previously for € . DASA Scheduling Automaton in
Section 3.2.1.2. In fact, largely because the automaton does not have to handle dependencies and aborts,
this set of operauon specifications is identcal to that shown in the previous section for the LBESA
Scheduling Automaton. Nonetheless. the two avtomata a * not identical since their 'SelectPhase()’
functions differ significandy.

‘SelectPhase’ Funcuon for DASA/ND Automaton. Figure 4-6 shows the definiuon ot the "SelectPhase()’

function for the DASA/ND Scheduling Automaton

This definition is structurally simdar to the defimuon for ‘SelectPhase()” found in the LBESA Scheduling

Automaton. But, although many of the functions arc identical. there are some cntical differences.

The most nouceable *-ference 1s the absence of the subsidiary function £, 5, (). which locates the phase
with the latest deadline. A less noticeable difference is invocation of P, 54}, rather than P, r, (). in the
defimtion of P__ .. £) In fact,itis P, . . 4} that orders the phases as they are added to a tentative
schedule for both the LBESA and the DASAND Scheduling Automata. Since the DASAND Scheduling

Automaton adds phases to the schedule 1n order of decreasing potential value density, it has no need for

P 1asin O-

C-70 Scheduling Dependent Real-Time Activities

® 1, .n TEQUESt-phase(v, ¢t

preconditions:
true <No preconditions here so that interrupts and other new phases
can occur at any ume>
postconditions:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total’ = Total + Value(p)(t

expected 1P

cvenl)

else
;no value for aborted phase

.release the resources acquired duning the phase
.involves no action for this simplified automaton

Value'(p) =v

ExecClock (p) = teypecied

AbortClock'(p) =0

ExecMode'(p) = normal

:note that p is not resource-waiting

.:make sure p is part of the list of phases, if necessary
if (tcxpwcd > () then
PhaseList' = PhaseList u {p}
else
PhaseList’ = PhaseList - {p}
PhaseElect’=SelectPhase(Phaselist”)
iflp=RunningPhase)then
.give up processor until next ‘resume—phase’
RunningP hase=nullphase
else
:happened under interrupt—leave’RunningPhase’alone

® !, . Preempt-phase(p) S:

preconditions:
(Running Phase=p)A(RunningPhase # nullphase)

~(RunningPhase # Phase{PhaseElect))
postconditons:
if (ExecMode(p) = nomal) then

ExecClock'(p) = ExecClock(p) - (t - ResumeTime(p))

event

else

AbonClock '(p) = AbortClock(p) - (1 - ResumeTime(p))

event
:note p is aot resource-wailing
RunningPhase’=rullphase

!, .n F€Sume-phase(p)$:

preconditions:
(RunningPhase=nullphase)An(Phase(PhaseLlect)=p)
A(Phase(PhaseElect) # nullphase)a(Mode(FhaseElect)=normal)
postconditions:
ResumeTime'(p) =1, .,
RunningPhase’=Phase(PhaseElect)

Figure 4-5: Operations Accepted by DASA/ND Scheduling Automaton

Scheduling Dependernt Reai-Time Activities C-71

SelectPhase(P) =
pickone(musrﬁnzshb,\'(DLﬁm(pmphsr).P“hm.“‘.d(/’))).
where
pmplist =tobescheduled(P , . . AP))

pickone(PMP) =
<normal.nullphase>, if PMP=0
<normal,p>| <normal p>€ PMP, otherwise
DLﬁm(PMP) =
oo ifPMP=0

Deadline(p) | (cnormal p>€ PMP)
A(VgX<normal.g>€ PMP — Deadline(q) 2 Deadline(p)),

otherwise

P:C’IedquJ(P) = .

0. if P=6

menble(P:chedujcd(P-{p})u(p})‘ lpr Plca.nP\‘(P)
me.n'blt(P) =0. if P=0

P, if feasible(P)

Pfea:l'ble(P—{p})‘ where p € PIta.rtPV(P)' otherwise
PleanP\’(P) =0, if P=0

{pl(pe P)A(VNg)ge P—=({(PVD(p)SPVD(q))
APVD(p)=PVD(q)— ExecClock(p) < ExecClock(q)))).

otherwise
tobescheduled(P) = {<normalp>|p€ P}
mustcompleteby(t.P) =
0. i‘f’dn'enl
{pl(pe PADeadline(p)<1]), otherwise
mustfinishbv{t.P) =
o, ifP=ovi<t,
v mustcompleteby(t.P)=0
{<normal,p> | p € mustcompleteby(1.P)}, otherwise
feasible(P) =lrue,iff(Vz)[(rz:n,m)-—)timerequiredby(mustﬁmshby(tl’)) < (=t)]
timerequiredby(PMP) =
0. if PMP=0
ExecClock(p)+timerequiredby(PMP ~{ <normal,p>)}), if <normalp>e PMP
Val(p)
PVD(p) = —
®) ExecClock(p)

Figure 4-6: Functional Form of DASA/ND Algonithm

C-72 Scheduling Dependent Real-Time Activities

As was mentioned in the previous section. this difference in schedule construction may allow the
DASA/ND Scheduling Automaton to accurnulate a higher value for an application than the LBESA Scheduling
Automaton. This will be illustrated by the proof in Secuon 4.3.2.4.

4.3.2.3. Proof: If No Overloads, ¢{DASA} and LBESA Are Equivalent

The introduction of the two scheduling automata in the previous sections has set the stage for the proofs
in this section and the next. The proof that follows demonstrates that if there are no overioads. then both
automata will accumulate the same value for the applicanon — that is. both algonthr.is will make the same
scheduling decisions. In fact. both automata will accept the same scquence of events as the scheduling
automaton embodying a deadline scheduler. As stated earlier. a deadline-ordered schedule 1s known to be

optmal for a uniprocessor when there are no overloads.

Theorem 2: Consider (1) a set of independent acuvities each comprising a single computational phase
that i1s characterized by a simple tme-value function — a step funcuon with a positive value before a
designated critical time and a value of zero after that me (that is, each phase has a hard deadline) —
where (2) there are sufficient processor cycles to allow all of the phases to meet their deadlines. Given two
automata, one designated DASA that accepts histones corresponding to schedules generated by the DASA
Scheduling with Dependencies Algorithm and one designated LBESA that accepts histones corresponding to
schedules generated by Locke's Best Effort Scheduling Algonthm, show that whenever (1) and (2} hold.
every history that is accepted by LBESA is also accepted by DASA that has equal value. Thus both automata
yield equal value for each such history.

Proof. For the sake of simplicity, since L.BESA cannot handle dependencies among phases, this proof will
be carried out by companng the LEESA automaton with the DASA/ND automaton — a simplified version of
the DASA Scheduling Automaton that contains no dependency considerations. The DASA/ND automaton 1s
defined in Sccuon 4.3.2.2. Furthermore, the only histories being examined by the automata are histories

that do not involve overload situations.
Proof by induction.

Basis. Show that (1) if LBESA accepts the first event in a history, DASAND will also accept it, (2)
RunningPhase, PhaseList, PhaseElect, and Total are the same for both automata, and (3) Value, ExecClock,

ExecMode, and ResumeTime are the same for each active phase in both automata.

Ininally,
« RunningPhase=nullphase
PhaseList=0

PhaseElect=<normal.nullphase>
Total=0

As a result, the only event whose precondition for LBESA may be satisfied is ‘request-phase.’ Therefore,
the first event in any history that LBESA will accept must be a ‘request-phase.”

Scheduling Dependent Real-Time Activities Cc-73

In that case, let the first event in the history be:

[pvent] reques!—phase(\'.ruptmd) Py

LBESA accepts this event — its preconditon for accepung it is true — and as pan of its postconditions, it
Sets:

Total'=0

Value'(p,)=v

ExecClock'(p,)=r"pme‘“
ExecMode'(p |)=normal
PhaseList'={p,}
PhaseElect’=SelectPhase(PhaseList)

= <normal.p,>. if feasible({p })
<normal.nullphase>. otherwise

DASA/ND also accepts this event — its precondition is also true — and. the state component changes
induced by the postconditions for the event include those made by LBESA.

Therefore, DASA/ND accepts the first event in any history accepted by LBESA. Furthermore,
RunningPhase, PhaseList, PhaseElect, and Total are idenncal in both automata after accepting this event.
And finally, Value, ExecClock. and ExecMode are the same in both automata after accepting the event for
the only currently active phase. p,, while ResumeTime is not yet defined for any phase in either automata
— and so is tntvially the same in both.

Inductive Step. Given that DASA/ND has accepted the first » events in a history that LBESA accepts; that
RunningPhase, PhaseList, PhaseElect, and Total are the same for both automata after accepting those
events; and that Value, ExecClock, ExecMode, and ResumeTime are the same in both automata for each
active phase after accepting those events; show that DASA/ND will also accept the n+/% event in the hustory
if LBESA accepts i, that RunningPhase, Phaselist, PhaseElect, and T'otal will be the same in each
automaton after that event is accepted, and that Value, ExecClock, ExecMode, and ResumeTime will be the

same in each automaton for each active phase after the n+/* event is accepted.

LBESA may accept any event for which the precondiuon 1s sausfied. In thus case. 1t may accept an
approprate:
¢ ‘preempt-phase’
¢ ‘resume-phase’

¢ ‘request-phase’

The precondition for accepting each of these events is the same n both automata. The preconditions
depend only on the values of RunningPhase. PhaseElect, and the parameter p. Hence if LBESA accepts the
n+1*" event, DASA/ND will also accept it since, by inductive hypothesis. it has the same values for the

relevant state components, the same parameter values, and the same precondition as LBESA.

Next, it should be demonstrated that RunningPhase. Phaselist, Phasellec:. and Total are the same for

C-74 Scheduling Dependent Real-Time Activities

both automata after the n+/%' event is accepted. and that Value, ExecClock, ExecMode, and ResumeTime

are the same for both automata for each active phase after that event is accepted.

Consider each of the three possible events:

I. ‘preempt-phase’ — in both automata. RunningPhase’ is set to nullphase while PhaseElect
remains unchanged. and therefore equal. Also in both automata, ExecClock’(p) is
condinonally assigned a new value. In both automata, the condition —

ExecMode(p)=normal — 1s idenucal, p is the same in both since it is part of the n+/* event,
and by inductive assumption ExecMode(p) 1s the same in both automata. Consequently.
either both or neither of the automata will update ExecClock’(p). Finally, note that the
formula used to update ExecClock’(p) is the same in both automata, ExecClock(p) and

ResumeTime(p) are the same 1n both automata by inductive assumpuon, and 1, . 15 the same

in both since it is part of the n+/*' event and so is independent of the state of the automata
Therefore, ExecClock’(p) will be the same in both automata if it 1s updated.

(5]

. ‘resume-phase’ — in both automata. RunningPhase 1s set 1o PhaseElect, which has the same
value in both automata after accepung the first n events, while PhaseElect remains
unchanged. and therefore equal, in both automata. Also, ResumeTime’(p) is settot, .. This
assignment results in the same state for ResumeTime'(p) in both automata since ResumeTlime
was the same 1n both automata for all active phases after the first n events had been accepted
and ¢, . is the same for both automata because it is part of the n+/*' event and so 1s

independent of the staies of the automata.

(W3]

. ‘request-phase’ —
® RunningPhase: in both automata, RunningPhase’ may condinonally be sei to nu!lrhase;
in each automaton, the conditon under which this 1s done — p=RunningPhase — is
the same, RunningPhase is the same by inducuve hyvpothesis. and p 15 the same since it
is part of the n+/*' event and has a value that is independent of the state of the
automaton.

PhaseList: in both automata, Phaselisi’ will conditionally be set 1o either
PhaseLisro{p} or PhaseList - {p); in each automaton, the condidon under which this

is done — rupemd>0 — is the same, PhaseList is the same by inductve hypothesis,

andpand, .., are the same since they are part of the n+[*" event and have values
that are independent of the state of the automaton.

PhaseElect. in both automata, PhaseElect’ is set to SelectPhase(Phaselist”). As argued
in the previous bullet. PhaseList’” is the same in both automata. Now consider the
function SelectPhase() for each automaton. Most of the subordinate functions involved
in the definition of SelectPhase() are identical in both automata. In fact the only
subordinate function that differs is P ., A) — although the form is the same in
both. the specific ordening of recursive functional evaluations is different in the two
automaton definitions.

It is gven that there are sufficient processor cycles available to allow all of the phases
to meet all of their deadlines. In terms of the mathematical formulauon of these
automata, this is equivalent to saying that (VP)feasible(P)=true — that is, it is feasible
to schedule all of the known phases at any given ume.~° In that case, for both automata
the defimtion of P/ () can be simplified from

easible
Pfta.nble(‘p) =0, if P=06
P, if feasible(P)

me;.b/g(P‘{P})' wherepe P, 0 dP). otherwise

“This property 1s maintained through an cntire history because both automata accept deadline -ordered histones if there are no
overioad conditions, and a deadiine-ordered schedule will be guaranteed 10 meet all of the deadlines i there are sutficient processing
cycles available.

Scheduling Dependent Real-Time Activities C-75

to

Pfta.nbir(P) =0. if P=0
P if feasible(P)

and. finally. to
Pfea.stble(P) =P

Since sza:xble() acts as an idenuty function. the definton of P, .. . A can also be
simplified from

P cheduiedP) =
[}

, if P=o
Pteasivie' P scneauwied P=1P 1P D). ifpe P (P)
10
P heduted £) =
S. if P=0
P neduied P—1P1)21P). ifpe P (P)

which is equivalent to

P:chcduicd(P) =°f

Of course. the definitons of SelectPhase() for both automata are now exactly the same.
The evaluation of SelectPhase(PhaseList’) depends on the values of PhaselList.
ExecClock’, and Value’, all of which are shown 1o be the same for both automata after
the n+/ , event in the history is accepted. The value also depends on 1, ,,, which is the
same for both automata since it is part of the n+/ event and is therefore independent
of the state of the automata. Consequently, PhaseElect” will be the same for both
automata.

Total: in both automata, if RunningPhase=p and ExecMode(p)=normal, Toial’ will be
set equal to Toral+Value(p)(t,,,,). otherwise, Total’ will remain unchanged by the
n+!_ evenl. Since by inductive hypothesis RunningPhase and ExecMode are the same
in both automata. and since p 1s the same in both automata since it is pant of the n+/,
event and consequently has a value that is independent of the state of the automata, the
condinon under which Total” will be updated by the n+/ , event is the same in both
automata. Also, since Total and Value are the same in both automata by inductive
hypothesis, and p and ¢, ,,, are both part of the n+/ event, the computed value
assigned to Total’ is identical in both automata.

* Value: in both automata, Value'(p) is unconditionally set to v; in each automaton, p and
v are the same since they are pant of the n+'* event and have values that are
independent of the state of the automaton. Since Value had been the same in both
automata afier n events were accepted and since both automata set Value'(p)=v, Value’
15 the same in both.

* ExecClock. in both automata. ExecClock’(p) is unconditionally setto 1., ... in each

automaton. p and lexpecied 3¢ the same since they are part of the n+/* event and have
values that are independent of the state of the automaton. Since ExecClock had been
the same 1n both automata after n events were accepted and since both automata set
ExecClock'(p)=t 4 ExecClock’ is the same in both.

expecte

e ExecMode: in both automata, ExecMode'(p) is unconditionally set to normal; in each
automaton, p is the same since it is pant of the n+/* event and has a value that is
independent of the state of the automaton. Since ExecMode had been the same in both
automata after n events were accepted and since both automata set
ExecMode’(p)=normal, FxecMode’ is the same in both.

® ResumeTime: in both automata, ResumeTime remains unchanged.

C.-76 Scheduling Dependent Real-Time Activities

Thus. if LBESA accepts any of these event types as the n+/* event in a hustory, so will DASAND, and the

significant state components of each automaton will be the same at that point.

Therefore, by induction. DASAND. and hence DASa itself, accepts any history accepted by LBESA under
the conditions outlined in the theorem statement. Furthermore. because the state component Toutal will be
the same 1n both automata after accepting a hustory, both will vield the same value for any history that they

| EndOfProof '

accept.

4.3.2.4. Proof: With Overloads, DASA May Exceed LBESA

The preceding secuon showed that the DASA Scheduling Automaton performed well when there were no
overloads. In this section. it is shown that, when there are overloads. the DASA Scheduling Automaton may
accept histones that yield higher values for the application than any history that may be accepted by the
LBESA Scehduling Automaton. The reason for this has been mentioned previously in Sectons 4.3.2.1 and
4.3.2.2: although both algorithms use similar value density metrics. they construct schedules in different

ways, potentally resulting in situations where LBESA sheds some phases unnecessanly.

Once again, for the sake of simplicity, since no dependencies are involved, the DASAND Scheduling
Automaton, rather than the DASA Scheduling Automaton, is use in the following proof. The result,
however, applies to the DASA Scheduling Automaton as well.

Theorem 3: Consider (1} a set of independent activities each comprsing a single computational phase
that is characterized by a simple time-value function — a step function with a positive value before a
designated critical time and a value of zero after that time (that is, each phase has a hard deadline) —
where (2) there are insufficient processor cycles to allow all of the phases to meet their deadlines. Given
two automata, one designated DASA/ND that accepts histones comresponding to schedules generated by the
DASA Scheduling with Dependencies Algorithm and one designaicd LBESA wiat accepts fustonics
corresponding to schedules generated by Locke's Best Effort Scheduling Algonthm, show that there are
situatdons where (1) and (2) hold and DASA/ND will accept a history with a greater value than any history
LBESA will accept involving the same phases and the same scheduling parameters (time-value functions and
required computation times).

Proof. This proof is carried out by constructing an example.

[ntuitively, LBESA constructs a complete schedule by considering each phase in order of its deadline,
nearest deadline first. As each phase is considered, an esumate is performed to determine whether there 15
an overload situation. In that case, it discards the phases with the lowest value densities untl a feasible
schedule is obtained. In the process, it may discard some phases unnecessanly. DASA/ND also constructs a
schedule from scratch: however, it begins with the phase having the greatest value density and considers
subsequent phases in decreasing order of value density. Each phase is included in the schedule in order of

its deadhine if the schedule — including that phase — is feasible. Since this approach includes as many

Scheduling Dependent Real-Time Activities C-77

high value density phases as possible and only discards those phases that cannot be added to the schedule.
rather than those that have lower value densities than one that must be diszanded.it avoids the problem that
LBESA encounters.

An example of DASAND accepung a history with a greater value than LBESA wul accept can be
constructed using phases with the following parameters:

Phase ! Deadline Required ; Value
| ¢ Computaton Time
pl I 2, : t,+1 5 vl
. p2 2, i t, ! v2
p3 | 2, - 1 | (-1 ‘ v3

Let ¢,21 and v1,v2,v3>0. Also. let v1/(r,+1)>v2/t >v3/(z -1} indicate the initial relationshup of the
value densities of the three phases. p/. p2. and p3. respectively. Now consider the following history. 4

t,=0" request-phase(stepivl, 2t). {,+1) pi
=0 request-phase(step(v2. 2(,), t,) p2
1;,=0 request-phase(step(v3, 2t,-1).1,- 1} p3
t,=0" resume-phase(p3) S

tg=1,-1 request-phase(step(0. oo}, O) p3
e = (t,-1)" resume-phase(pl) S

1,=2t, request-phase(step(0, «=1. 0) pl

This history is accepted by the DASAND automaton and has a value of v1+13, but 1s not accepied by the
LBESA automaton. In fact. the only histones that LBESA accepts with only these three phases and the same
scheduling parameters have value v1 or less. The following sections demonstrate each of these facts in

tum.

DASA/ND Automaton Accepts History H, By following the DASAND automaton through the suate
changes accompanying the acceptance of each individual event in the tustor,, this section will demonstrate
that hustory f/, is accepted by DASAND. For reference. the DASAND automalon was defined in Section
4322

According to the automaton de fimuon, initally:

Totai=0
RunningPhase=nuliphase
PhaseElect=<normal.nullphase>
Phaselist=0

The following labeled steps demonstrate the acceptance of cach event in fustons /1. and detay! the changes
g p p ALY g

in state component values that accompany cach event.

C-78 Scheduling Dependent Real-Time Activities

Event1: t;=0" request-phase(step(v1, 2t). t,+1) pl!

event parameters:

In'enl = r1 =0~
v = step(v1.2t))
rexpecm{ = la+l
p=pl
precondition: true (so the event 1s accepted)
postconditions:
Value'(pl)=step(v1.2t)
ExecClock’(pl)=t +1
AbortClock’(p1)=0
ExecMude’{pl)=ncrman!
PhaseList'=60{pl)=(pl} (since !emmm:»O)
PhaseElect’=SelectPhase({pl})
Event2: t,=0 request-phase(step(v2, 2t,). t,) p2 }[
event parameters:
levent =12 = 2

v = step(v2.21)

{expecled =1,

p=p2
precondition: true (so the event is accepted)
postconditions:
Value'(p2)=step(v2.2t)
ExecClock'(p2)=t,
AbortClock’(p2)=0
ExecMode’(p2)=normal
PhaseList’={pl}u{p2)=(pl p2} (since l”pecud>0)
PhaseElect’=SelectPhase({pl p2})
Evem3: ;=0 request-phase(step(v3, 2t,-1), ¢ -1) pﬂI
event parameters:
lyvent =13 = 0
v =step(v3.2t -1)
re,rpccrtd = {a_l
p=p3
precondition: true (so the event 1s accepted)

postconditions:

Scheduling Dependent Real-Time Activities Cc-79

Value'(p3)=step(v3.2t ~1)

ExecClock’(p3r=t,-1

AbortClock’(p3)=0

ExecMode’(p3)=normal

PhaseList’={pl p2}{p3i={pl.p2.p3} {(since !exp“me)
PhaseElect’=SelectPhase({pl.p2p3})

Evaluating SelectPhase({pl p2,p3}) ...

SelectPhase({pl.p2.p3}) =
pickone(muS(ﬁnishb_\'(DLﬁm(pmp/ist).P:ch‘du,ed({p 1.p2.p310).
where
pmplist =tobescheduled(P ;... £1P1.P2.p3)))

P ohedued 1P1P2P3)) =

P feasivie P scheduted {p1p2h)ip3}) (since P o pAip102p31)={pP3])
P:chtdu’ed({pl'pz}) =

Pfea:zble(P:ch:duizd({pl })‘\J{pZ}) (since P,m_ﬂp‘f{lePz })={P2})
P cneduied P

= P{ea::ble(P:chedulzd(ow{pl }) (since Plea_\-va({Pl })=[P1 })

=Pt dOV (P11
=P g 1P D)
= {pl}.iffeasible({pl})

feasible({pl}) = true,
U (ID)[(12¢)y —> timerequiredby(mustfinishby(1.{p1})) S (=t o]

~event

Fore2t, . --.

mustfinishby(1.{p1}) =

0, if mustcompletebr(1.{pl})=0
{<normalp>|p€ mustcompleteby(t.{pl})}.
otherwise

mustcompleteby. . {pl})
=|p|lp€ (pl}~Deadline(p)<i})

=90, ift<Deadline(p1)=2t,
{pll, if 12 Deadline(pl)=2t,

Therefore . ..

C-80

mustfinishby(t.{pl})

Scheduling Dependent Real-Time Activities

= 0, 1fr<2r,
{<normalp>|{pe {pl}}, otherwise
=0, i<t

{<normal p1>},

timerequiredbv(mustfinishby(t.{pl})) =

= timerequiredby(0). if 1<t
timerequiredbv(|{ <normalpl>}), 22,
=0, ifrs,
ExecClock(pl)=t +1, 122,

Notice that for¢2¢, =0, whent<2t, ...

event

timerequiredbv(mustfinishby(t.{p1}))=0<(t-t

n-eru)'

And whenlz?_ra o

2

timerequiredby(mustfinishboy(t[pl})= +1 <2t S(=t

Therefore . ..

feasible({pl})=true—>P ., ... A{pl}={pl}

Conunuing ...

P:cheduled({pl'pz l)
= Pfea.n[:.’t(P:chedu/eA{pl etpzh)
= Pfea.nble({pl }u{pZ})

= P/feanble({pl ,pz })

To evaluate P/,mnble({pl.pZ}) c

feasible({pl.p2}) = true iff (V1)[(+2

[4% tnl)

— umerequiredby(mustfinishby(t,(pl p21)) £ (~t, ,.,)]

>
Fort_rmm -

mustfinishby(t.{pl p2}) =

otherwise (122

as required for feasibility

as required for feasibility

0, if mustcompletebr(1,(pl.p2})=0
{<normal.p> | p € mustcompleteby(t.[pl.p2}])},
otherwise
mustcompletebyvit.{pl.p2})
={plpe (plp2iADeadline(p)<t}}
=0, ift<Deudline(pl)=Deadlineip2i=2t
{plpll, if1 2 Deadline(pli=Deadlineipl)=2t

Scheduling Dependent Real-Time Activities C-8]

Therefore . ..

mustfinishby(t,{pl p2})

=0, ifr<2r,
{<normalp>|pe {plp2]). otherwise

=0, 1if1<e,
{<normal pl>,<normal p2>}, otherwise (12 2,)

timerequiredby(mustfinishbyv(1,{pl p2})) =

= timerequiredby(0). 'u'1<2:a
timerequiredby({ <normal.pl><normal p2>}),
1fr22s,

=0, ifr<e,

ExecClock(ply+ExecClock(p2)=21 +1, if 122t

Notice that for r=2¢,

timerequiredby(mustfinishby(t,{p1,p2}))=2t +1>2t =(1~t,)
Thus violates the requirement for feasibility, therefore . . .
feasible({p] p2 })=false
fwnblr({pl\oz} j’ea.nble([pl }) (since P1¢“1P\({P1vp2))={P2})
= {pl} (as shown above)
—)Pschzdulzd({pl‘pz }) = {pl } (since P:ch:duw‘l({pl ‘Dz}) jtmxblr({pl‘pzl))
Continuing . ..
P seheduied 1P1P2P3))
= Py asibielP scheduted (P1P21{P3]) (as shown above)
= P (P1IC13)
]'ea.nblz({pl 103 1)

To evaluate /m‘ble({plpii})

feasible({p1.p3}) = true \ff(V)[(121,,)
— timerequiredby(mustfinishby(1,{pl p3))) < (1—t

- (\en!)]

Fore2r

C-82 Scheduling Dependent Real-Time Activitics

mustfinishbyv(t.{pl p3}) =

0, if mustcomplereby{(¢.{pl p3})=0
{<normal.p> | p € mustcompleteby(t.{pl.p3})}.
otherwise

mustcompleteby(t.{pl.p3})
=(pl{pe {plp3|ADeadline(p)<t])

= 0. ifr<Deadline(p3)=2t -1
{p3}. if Deadline(p3)=2t ~1 <t
<Deadline(pl)=2t,,
{plp3}, if 12 Deadline(pl)=2t,

Therefore . ..

mustfinishby(¢.{pl p3})

=0, if 1<t -1
{<normalp>{pe {p3}}. if2e ~1<e<2t,
{<normalp>|pe {plp3}]. if2r, <t

=0, ifr<2t ~1
{<normal p3>}, if2r ~1<st<2t,
| <normal pl>.<normal p3>}, 1f2r, <t

nmerequiredby(mustfinishby(t,{pl p31)) =

= timerequiredby(0), if 12t -1
timerequiredby({ <normal.p3>}), if 2, ~1<1<2t,
timerequiredby({ <normal pl><normal.p3>}),

if2¢, <S¢

=0, if 1<t -1

ExecClock(p3)=t ~1, if 2 15121,

ExecCloci{pl)+ExecClock(p3)=2t,, if2t <t

Notice that for 12{""”:0. whent < 2ti-l -

timerequiredby(mustfinishby(t.{pl p31N=0< (1~), as required for feasibility
When 2t -1 <12t ...
timerequiredby(mustfinishby(1,{pl p31))=t -1 <2t =1 <~),
-as required for feasibiity
And when122:, . ..
timerequiredby(mustfinishby(1.{pl p3}))=2t Sl1=t_),
as required for feasibility
Therefore . ..
feasible({pl.p3})=true

_’Pfea.nblz({Pl»P3 h={plp3]
P heduted 1PLP2PIN={p1p3]

Scheduling Dependent Real-Time Activities C-83

S0P pedued | PLP203)). the set of phases that can

feasibly be executed so that each will meet its deadline while contmbuting
the maxaimum value to the system for the investment o1 a given amount of
ume, has now been determined. Next, the individual phase from this set
that will be executed first must be determined . ..

pmplist = tobescheduled(P __,£1P1p2p3}))
= tobescheduled({pl.p3})
= {<normal pl>.<normal p3>}

DLﬁm(pmplisr) = DLﬁ,ﬂ({ <normal pl><normal p3>})

= [a—

muslﬂn1'shb)‘(DLﬁm(pmp11'st).P“hzdu,(d({pl L2p31)
= mustfinishby(2t ~1.{p1p3})
= {<normal p>| p € mustcompleteby(2t ~1.(plp3})}
(assuming mustcompleteby(2t ~1,{pl p3})#)
= {<normalp>|p€ {plp3}ADeadline(p) <2t -1}
= {<normalp>|p€ {p3}] (note that mustcompleteby(2t ~1,{p1p3})=0)
= {<normal p3>}

Finally ...
PhaseElect’ = SelectPhase({pl p2.p3})

= pickone(mustfinishby(DL.__(pmplist).P A{p1.p2.p3])))
= pickone({ <normal p3>})

= <normal.p3>
Event4: 1,=0" resume-phase(p3) 51‘
event parameters:
’tven! = 14 =0*
p=p3
precondition:
(RunningPhase=nullphase)a(Phase(PhaseElect)=p3)
A(Phase(PhaseElect)# nullphase)A(Mode(PhaseElecth=normal)
(RunningPhase=nullphase)a(Phase(<normal p3>)=p3)
n(Phase(<normal p3>)=z nullphase)An(Mode(<normal,p3>)=normal)
true (so the event 1s accepted)
postconditions:

ResumeTime’(p3)=0"
RunningPhase’=Phase(Phasellect)=Phase(<normal,p3>)=p3

C-84 Scheduling Dependent Real-Time Activities

Event5: tg=t,1 request-phase(step(0, o). 0) p3
event parameters:
e =1t = ta—l
v = step(0,02)
texpecud =0
p=p3
precondition: true (so the event is accepted)
postconditions:
Total =0+Value(p3)(ta— 1) (since RunningPhase=p3 AExecMode(p3)=normal)
= step(v3.2t ~1)(1,-1)
=v3

Value'(p3)=step(0,)
ExecClock’(p3)=0
AboriClock’ (p3)=0
ExecMode'(p3)=normal

PhaseList'={pl.p2.p3}-{p3}={plp2} (since rexptma-:O)
PhaseElect’=SelectPhase({pl,p2})
RunningPhase’=nuliphase (since p3=RunningPhase)

Evaluating SelectPhase({pl p2}) ...

SelectPhase({pl.p2}) =
pickone(muslﬁnishby(DLﬁm(pmplist)J’xh‘du,‘d({plo2IN)
where
pmplist =tobescheduled(P ., ,...£{p1.p2}))

P:cheduled'({pl‘pzl) =
Pfca:ible(P:cheduled({pl holpz)) (since Py, pA1P1P2))={P2})

P s cheduied 1P1])
= Pfedsible(chhzdulcd(o)kJ[pl D (since PIeaJIPV({pl l)={p1 b
= Pfea.n'blt(ou{pl)
=F fmxible({p h
= {pl},iffeasible({pl})

feasible({pl)) = true,

(VO[(t21,,) timerequiredby(mustfinishby(t.{p1})) € (t—t,)

event

As before, fore21, , =t ~1 ...

Scheduling Dependent Real-Time Activines C-85

musifinishby(t,{pl}) =
0. if musticompleteby(1.{pl })=6
{<normal p> | p € mustcompleteby(t,{pl 1)},

otherwise
mustcompleteby(t,{pl})
={p|(pe (pl)ADeadline(p) <1}
=0, ifr<Deadline(pl)=2t,
{ptl, if12Deadline(pl)=21,
Therefore . ..
mustfinishby(t.{p1})
=0, if1<2r,
{<normalp>|pe {pl}]. otherwise
=0, ife<2s,
{<normal pi>}, otherwise (1221)
timerequiredby(mustfinishby(1,{pl})) =
= timerequiredbv(0), ift<2e,
timerequiredby({<normal.pl>}), ifr22t,
=0, ifi<2e,
ExecClock(pl)=t +1, ifr>2r,
Notce that for¢>r, =t ~1, whent<2t, ...
timerequiredbv(mustfinishby(t.{p1}))=0< (1, ..}, as required for feasibility
And whent22r, . ..
timerequiredby(mustfinishby(t,{p1 }))=t +1 (11,) as required for feasibility
Therefore . ..
feasible({pl})=true =P, ... AplhH={pl}
Continuing . ..
P:cheduled({pl'pz })
= Pfea.rible(chhcduled({pl Paip2) (as shown above)

= Pf“u,'b[,(lpl)U(PZ])
= chrmblt(lpl'pzl)

feasible({pl,p2}) = true i (V0)[(t2¢, ,.)
— timerequiredby(mustfinisiby(t.{pl p2})) < (1~)]

As before, for121

event "

C-86

mustfinishby(t.{pl p2}) =
o

{<normal.p> | p € mustcompleteby(t.{pl

mustcompleteby(t.{pl.p2})
={p|{pe {plp2}ADeadline(p)<t]}
=0,
{plp2},
Therefore . ..
mustfinishby(t,{p1 p2})

=°‘
[<normalp>|pe (plp2}).

=0,
{<normal pl>.<normal p2>},

timereguiredby(mustfinishby(t,{pl p2})) =
= timerequiredby(0),

Scheduling Dependent Real-Time Activities

if mustcompletebyvti, {pl p2})=0

PZDL

otherwise

ift<Deadline(p1)=Deadline(p2)=2t,
if1 2 Deadline(p1)=Deadline(p2)=2t,

if1<2s,
otherwise

ifts,
otherwise (122t)

ift<2t,

timerequiredby({ <normal pl>.<normalp2>}),

=0,

ife22r,

ift<2e,

ExecClock(pl)+ExecClock(p2)=2t +1, if1221,

Notice that for /=2t . ..

timerequiredby(mustfinishby(t.(pl p2}))=2t +1 >t +1=(t=t,)

This violates the requirement for feasibility, therefore . ..

Jeasible(|pl.p2))=false

—)P[w.nble({plvpz}) = me.nblt({pl })

= {pl}
—‘)chhcduled({phpzl) ={pl}

(since P, oA {plp2})={p2})
(as shown above)
(since P:ch:duled((plp2))=Pfea.nblt((p1.p2}))

Once again, the set of phases that can feasibly be placed in a schedule
based on current knowledge has been determined. Now a single phase must be
selected to execute first . ..

Scheduling Dependen: Real-Time Activities C-87

pmplist = tobescheduled(P_,A1P1P2IN
= tobescheduled({p1})
= {<normal,pl>)

DLﬁ,S_,(pmplist) = DLﬂm({<normal pl>})

= 2ra

mustﬁnishb)'(DLﬁm(pmplxsr).th‘dmd({plp2})
= mustfinishby(21,.{pl})
= (<normal.p> | p &€ mustcompleteby(2t,.{pl}))
(assuming mustcompleteby(2:,.{pl})=)
= {<normalp>|p€ {q]| (g€ (pl}ADeadline(q)<2t,]}}
= {<normaip>|pe (pl}] (note that mustcompleteby(2t,.(p1})=0)
= {<normal pl>}

Finally ...

PhaseElect’ = SelectPhase({pl.p2})
= pickone(musrﬁmshby(DLﬁm(pmplist).Fsch‘du,d({pl.p?. B
= pickone(| <normalpl>})

= <normal.pl>
Event 6: e =(1,- 1)* resume-phase(pl) ﬂ
event parameters:
Inenl = 16 = (ra_l)‘
p=pl
precondinon:
(RunningPhase=nullphase}a(Phase{PhaseElect)=pl)
~{Phase(PhaseElect)# nullphase)an(Mode(PhaseElect)=normal)
(RunningPhase=nullphase)A(Phase(<normalpl>)=pl)
A(Phase(<normal pl>) = nullphase)A(Mode{<normal.,pl>)=normal)
true (so the event is accepted)
postcondiuons:
ResumeTime'(pl)=(t,~1)"
RunningPhase’=Phase(PhaseElect)=Phase(<normal pl>)=p1
Evem7: t,=2t, request-phase(step(0, «), 0) pl |

¢vent parameters:

C-88 Scheduling Dependent Real-Time Activities
levent = ty= :[a
v = stept0.00)
lexpzcxed =0
p=pl
precondition: true (so the event 15 accepted)
postconditions:
Total=v3+Value(pl (2t) (since RunningPhase=pl AExecMode(pl)=normal)
= v3+Step(vl.2!a)(21a)
=v3+vl

Value'(pl)=step(0,e=)
ExecClock'(p1)=0
AboriClock’(pl)=0
ExecMode’(p1)=normal

PhaseList'={pl,p2}-{pl}=(p2} (since lupemd=0)

PhaseElect’=SelectPhase({p2})

RunningPhase’=nullphase (stnce pl=RunningPhase)

Therefore, the history is accepted by the DASA/ND automaton and has a total value of Toral=v1+v3.

LBESA Automaton Does Not Accept History H;. The first two events are accepted in the same way as
they were for DASA/ND. Also, all of the state components, with the possible exception of "PhaseElect,” are
the same for both automata after the first two events. Afier that, LBESA behaves differently than DASA/ND.
The following development shows the behavior of LBESA in detail. (Refer to Section 4.3.2.1 for the

definition of the LBESA automaton.)

According to the automaton definition, utially:

Total=0
RunningPhase=nullphase
PhaseElect=<normal.nullphase>
PhaselList=0

The following labeled steps demonstrate the acceptance of the first few events in history //, and detail the

changes in state component values that accompany each event.

Eventl: 1, =0~ request-phase(step(vl, 2t,), t +1) pl

event parameters:

lvem =1 = 0
v = step(vi2i)
'upecled = ra+1
p=pl
precondition: true (sa the event is accented)

postconditions:

Scheduling Dependent Real-Time Activities

Value'(pD=step(v1.21)
ExecClock’(pl)=t +1
AbortClock’(p1)=0
LxecMode'(pl)=normal
PhaseLisi’'=0_{pl}={pl}
PhaseElect’=SelectPhase({pl})

C-89

tsince ICXPCC!!J)O)

Event2: t,=0 request-phase(step(v2, 2t,). t,)

event Qarameters:

levent = ty= 0
) - 9
v =step(v2.2t))

ttxpecled =1l
p=p2

precondition: true

(so the event is accepted)

postconditions:
Value'(p2)=step(v2.2t)
ExecClock'(p2)=t,
AbortClock’(p2)=0
ExecMode’(p2)=normal
PhaseList’={pl}u{p2}={pl p2) (since tupmzd>0)
PhaseElect’=SelectPhase({pl.p2})
Event 3: 1= 0 request-phase(step(v3, 2t,-1),t,-1) p3
event parameters:
Levent = I3 = 0
v =step(v3.2t -1)
Iexpec:ed = 'a_l
p=p3
precondinon: true (so the event is accepted)
postconditions:
Value'(p3)=step(v3.2t -1)
ExecClock'(p3)=1,-1
AbortClock’(p3)=0
ExecMode'(p3)=normal
PhaseList'={pl.p2}oi{p3}={pl.p2.p3} (since t“pwcd>0)

PhaseElect’=SelectPhase({pl p2,p3))

Evaluating SelectPhase({pl p2 p3}) ...

Scheduling Dependent Real-Time Activities

SelectPhase({pl.p2.p3}) =
pickone(mustfinishby(DL_ (pmplist).P ., ... A1p1.p2.p3 1)),
where
pmplist =tobescheduled(P_,, ... A1pl.p2.p3}))

Pschedulzd({pl.p2p3 D=
Prrasibie P scheduied 1P1P3IDV(P2)) (since P p; (1P1P2031)=(p2})

P icheduted tP1P31) =
Pf,mbI,(P;ch,dud({P3})\J{Pl 1 (since PlaJIDL({Pl-p3})={P1 D

P:cheduled({P3)
= Pfeasible(Pschzdulzd(o)u{p3 D (since Pla“DL({pl })={P1 h
= P[emihle(ou{p3)
= Pfea.n‘blz({p3})
= {p3}.iffeasible({p3})

feasible({p3}) = true,

iff (Vo)[(121)y — timerequiredby(mustfinishby(t.{p3})) £ (1~ 0]

event

Fore2t, .\ - -

mustfinishby(t,{p3)) =

o, if mustcompleteby(t.{p3})=0
{<normal.p>| p € mustcompleteby(t.{p3})}.
otherwise

mustcompleteby(1.(p3})
= {p|pe {p3}ADeadline(p) <t}}

=0, if r<Deadline(p3)=2t ~1
{p3}. ift2Deadline(p3)=2 -1

Therefore ...

mustfinishby(1.{p31])

=0, if 12t -1
{<normal p>|pe {p3}}. otherwise

=0, ifldfa—l
{<normal p3>}), otherwise (r22f,~1)

timerequiredby(mustfinishby(t.{p3})) =

= timerequiredby(0), if 1<t -1
timerequiredby({ <normal p3>}), ife22¢ -1
=0, if{dfa—l
ExecCIock(p3)=la—l. ife2 2!a—l
Notice that for¢2¢, =0, whent < 2t,-1 ...
timerequiredby(mustfinishby(t,{p31)=0< (1~ n0). as required for feasibility

And when t22¢ -1 ...

Scheduling Dependent Real-Time Activities C-91
timerequiredby(mustfinishby(1.{p3 V)=t ;=121 ~1 (1=t).
as required for feasibility

Therefore . ..

feasible({p3))=true > P 414 1P31)={p3}

Conunuing . ..
Pcnedued 1P1P3))
= P/‘mble(}’xhedmd({p3})u{p1 3 {as shown above)

= sza.nblz({p:; boipl)])
= P/e:mble({ptp3})

feasible({pl.,p3}) = true iff (V1){(12 tpvent)
—> timerequiredby(mustfinishby(t.{p1 p3})) < (1=,

Fori2t

event * 7 °
mustfinishby(1.{pl p3}) =
o, if mustcompleteby(t,{pl,p3})=0
{<normal,p> | p € mustcompleteby(1.{p1.,p3 D},
otherwise
mustcompleteby(t.{pl.p3})
= (p|lpe |plp3}aDeadline(p)<t]}
=0, if t<Deadline(p3)=21,-1
{p31. if Deadline(p3)=21 -1 <t
<Deadline(pl)=2t,
(plp3} if 1> Deadline(p1)=21,
Therefore . ..
mustfinishby(t.{plp3})
=0, ifr<t -1
{<normalp>|pe {p3}}. if2r,-1s1<2t,
{<normalp>|pe {p1p3}}. if2r, <t
=0, ifldla—l
{<normal p3>}. if2s,-1 St<e,
{<normal pl>.<normal p3>}, if2r, <t
timerequiredby(mustfinishby(1.{pl p3})) =
= timerequiredby(0), ifr<2t -1
timerequiredby({ <normal,p3>}), if2e ~1<t<2s,
timerequiredby({ <normal,p1>.<normal,p3>}),
if2t, <t
=0, ifldfa—l
ExecClock(p3)=t -1, if20,~1 <1<,

ExecClock(pl)+ExecClock(p3)=2t,, if2t,st

c-92

Scheduling Dependent Real-Time Activities

Nodtce that for r2¢, =0 whent< 2t-1 ...

timerequiredby(mustfinishby(1.{pl p3}))=0<(t~t, ..). as required for feasibility

Y -
When 21 1121, . ..

timerequiredby(mustfinishby(t.{pl p3}|))=t ~1 <2t ~1<(t—1,,,,.,).
as required for feasibility

And when22¢, ...

timerequiredby(mustfinishby(t.{p1,p3]))=2t < (¢-t

!venr)'
as required for feasibility

Therefore . ..

feasible({pl.p3})=true
—)Pfea.n'ble((pl .P3 })=(P1.P3 }
- P:cheduled({pl P31)={pl.p3]

Continuing . ..

P cheduied (P1P2P3])
= PfemibI,(P;ch,du;,d({Pl-P3 Ix{p2}) (as shown above)
= P[ea.nble({pl'p3 }U[Pz})
= Ploasinie {P1P2P31)

To evaluate P/mswle({pl.pz.pfi}) N

feasible(|pl.p2p3)) = true ifE(VD){(t 21, ,.) ‘
— timerequiredby(musifinishby(t.{p1p2p3))) < (-1, ,,)) |

Fori2t, ., -

mustfinishby(t.{pl p2p3]) =

o, if mustcompleteby(t,{pl p2.p3})=0
{<normal.p> | p€ mustcompleteby(t.{pt . p2.p3 N},
otherwise

mustcompleteby(t.{pl.p2.p3})
={p|(pe (plp2p3|aDeadline(p)<t]}

=0, ift<Deadline(p3)=21 ~1
(P31, f Deadline(p3)=2t,-1 <t
<Deadline(pl)=2t,
{plp2,p3], ift2Deadline(pl)=21,

Tuerefore . ..

Scheduling Dependent Real-Time Activities C-93

mustfinishby(t.{p1,p2p3})

=0, if1<2r ~1
{<normalp>|pe {p3}}. 1f2r -1<t<2,
{<normalp>|pe {plp2p3l}, if21, <t
=46, if 1<t 1
{<normal p3>}. 2 ~1<r<2,
{<normal pl>.<normal p2>,<normal p3>},
if2r, <t

timerequiredby(mustfinishby(t.{pl p2,p3})) =

= timerequiredby($), if(d/a-l
timerequiredby({<normal,p3>}), if 21 -1<1<t,
timerequiredb({<normal pl>.<normal p2>.<normal p3>}).
f2, <t
=0, if1<2r ~1
ExecClock(p3)=r -1, 21 -1<t<t,
ExecClock(pl)+ExecClock(p2)+ExecClock(p3)=3t,,
if2¢, <t

Notce that for r=2r, ...

timerequiredby(mustfinishby(1,{p1 p2,p3}))=31,>2t =(1—t

(thlf)

This violates the requirement for feasibility, therefore . ..
Seasible({pl,p2.p3)})=false
*me,,'bl,({Pl-P?--ﬂ })=me,,p,1e({PlvP2 1 (since Plea-ﬂP‘({plp2,p31)=(p3})
Toevaluate P, ., . ({p1,p2}) ...

feasible({pl,p2}) = true . iff (VD)[(+21,,,)
— timerequiredby(mustfinishby(1,{pl1 p2})) < (1—t

)]

even!

Foreze

mustfinishby(t.{pl p2}) =

0. if mustcomplerchv(t,(pl,p2})=6
{<normalp>{pe mustcompleteby(t.{pl p2])}.
otherwise

mustcompleteby(t,{pl.p2})
={pllpe (plp2}ADeadline(p)<t]}

=6, if 1<Deadline(p1)=Deadline(p2)=21,
{plp2). if 12 Deadline(pl)=Deadline(p2)=2,

Therefore ...

C-94 Scheduling Dependent Real-Time Activ..ies

mustfinishby(t.{p1 p2})

=0. if 1<t
{<normalp>|pe (plpli}. otherwise

=0. ifr<2r
{<normal,pl><normal p2>}, otherwise (22t)

timerequiredby(musifinishby(t.{pl,p21)) =

= timerequiredby(9), if:dta
timerequiredby({ <normal pl><normal,p2>}),
ift2 210

=0, iftdra

ExecClock(pl)+ExecClock(p2)=2t +1, if122t,
Notice that for r=2r . ..
timerequiredby(mustfinishby(t.{p1 p21))=2t +1>2t =(t~t_,,.)
This violates the requirement for feasibility, therefore . . .

feasible({pl.p2))=false
_’Pfeaxiblt((p1p2})=Pftaxxb1e({pl) (since PI:a:IP\"([pl,pZ]):[pZ))

To evaluate P/‘mbk({pl N

feasible({pl}) = true,

i (v)[(t21,,,,,) = timerequiredby(mustfinishby(t,{pl1})) < (1=t on)]
Fort2e,
mustfinishby(t.{pl}) =
o, if mustcompleteby(t,{pl })=6
{<normalp>| p € mustcompletebv(t.{pl})}.
otherwise

mustcompleteby(t.{pl})
={p|(pe {pl1ADeadline(p)<i]}

=0, ift<Deadline(p})=2t, -
{pl}, ileDeadline(pl)=2la

Therefore . ..

Scheduling Dependent Real-Time Activities

mustfinishby(t.{p1})
=0,
{<normalp>|pe {pl}].

=0.
{<normalpl>],

timerequiredby(mustfinishby(t (p1})) =
= nimerequiredby(0),
timerequiredby({<normal pl>}),

=0,
ExecClock(pl)=t +1.

Notice that forr>¢ =0, whent<2t, ...

even!

timerequiredbv(mustfinishby(t {p) N=0< (et).

And whenr22r ...

C-95

ifld/a
otherwise

if1<t,

otherwise (12 21,)
ifrr,

1)

ifr>2r,

ifzdra
ifr>2r,

as required for feasibility

nimerequiredby(mustfinishby(1.{p1}))=t +1 €2t S(t=t)

Therefore . ..

feasible(|pl))=true = Pr .0, (1P1D=1p1]

Putung this together . ..

P:rheduled({pl .p2.p3 }) = P[can’hlr({pl ‘pz‘p3 })
= P/ea.nblt({pl‘pz })

as required for feasibility

(since feasible({p1.p2 p3))=falsenP . .; {11023 1)={p3])

= Pfea.nbie({pl })
={pl}

(since feasible({pl p2))=falsenP , .p AP P21)={p2}}

(as shown above)

At this point. the sct of phases that can be feasibly executed has been
determu,cd. Now to decide which phase to be executed first . ..

pmplist = tobescheduled(P ., ... APl p2.p3}))

= tobescheduled({pl})
= {<normal,pl>}

DL 'nmplist) = DL

firsi ({<normal pl>})
=2,

irst

mu;lﬁnishb_v(DLﬁ,S,(pmpljst)‘Pschdulm({pitp2.p3}1))

= mustfinishby(2t,.{p1})

= | <normalp> | p € mustcompleteby(2t,.(pl}}}

(assuming mustcompleteby(2t .{p1})#¢)

= {<normalp>|p€ (ql g€ {pl}ADeadline(q)<2t,]})

= {<normalp>|p€ (pl})
= {<normal pl>}

(note that mustcompleteby(2t,.{p1})#¢)

C-96 Scheduling Dependent Real-Time Activities

Finally . ..

PhaseElect’ = SelectPhase({pl.p2.p3})
= pickone(mustfinishby(DLg, (pmplist).P ;.. {P1.p2.p31)))
= pickone({<normalpl>}y
= <normal,pl>

Eventd: 1,=07 resume-phase(p3) S|

event parameters:

tt‘venl -

p=p3

- -+
;=0

preconditon:

(RunningP hase=nullphase)~(Phase(PhaseElect)=p3)
A{Phase(PhaseElect)# nullphase)~n(Mode(PhaseElect)=normal)

(RunningPhase=nullphase)A(Phase(<normal pl>)=p3)
A(Phase(<normal pl>)# nullphase) nN(Mode(<normal.pl>)=normal)

false, {(since Phase(<normal pl>)=pl # p3)

Since the precondition is not sausfied. the event cannot be accepted.

Therefore, history H is not accepted by the LBESA automatorn

LBESA cannot accept any history that begins with Events (1)-(3) and that has only those three phases,
with the already specified time-value functions and computation time requirements, that will yield a total

value greater than v1.

This proof will be carmed out by idennfying all of the histories that LBESA can accept under these
circumstances. The total value resulting from each of these histones will then be examined o demonstrate

that none is greater than v1.

To begin to identify the histories that are accepted by LBESA, notice that. given Events (1-(3), LBESA will
behave cxactly as descnbed in the preceding section. After accepting Event (2), the third event in this
sequence, the only events whose preconditions are satsfied are:

1. any ‘request-phase’

2. ‘resume-phase(pl)’

Examune the first possibility — any ‘request-phase’ event — more closcly. Let p, denote the phase

originating a ‘request-phase’ event. If p & {pl.p2. p3}. then p, is a new phase. But this violates the

Scheduling Dependent Real-Time Activities Cc-97

assertion that the only histories being considered consist solelv of events associated with phases pl. p2, and
p3. Therefore. p, must be a member of {pl.pZ. p3}.

Also, notice that after accepting Events (1)-(3). RunningPhase=nullphase. which is not a member of {pl,
p2.p3). Consequently. the posicondiuons of a ‘request-phase(v .,) p, " e ent are:
Value'(p)=v,
ExecClock’(p,)=1,
AbortClock'(px)=0
ExecMode’(p Y=normal
PhaseList’=PhaseLisro{p_} or PhaseList~{p |
PhaseElect’=SelectPhase(PhaseList’)

Notice that ﬂlese postconditions serve only to alter or reiterate the scheduling parameters of the already
defined phases (possibly removing one of the phases from consideration from scheduling at the same ome
and potentially selecting a new PhaseElect to reflect these changes). If the scheduling parameters are
altered, this violates the assertion that the automaton will consider only the time-value functions and
expected computation times already specified for the three phases by the first three events. Consequenty,
the only 'request-phase’ events that LBESA can accept at this point reiterate the scheduling parameters for
p, € (pl. ;2. p3}. (Hereafter, ‘request-phase’ events that serve to reiterate previously defined scheduling
parameters may be referred to as reiterative 'request-phase’ events.) Furthermore, notice that although
such 'request-phase’ events do not alter the scheduling parameters for a phase — thev merely reiterate
them — there is a potental effect of these events on the automaton state component PhaseElect, which is
set equal to SelectPhase(Phas~List’) as a postcondition of each 'request-phase’ event. The function

SelectPhase() is dependent on t which increases during the course of any history.

ecvent®

To examine the effect of a 'request-phase’ on PhaseElect consider first the cffect on the value of

P heduied 1P1.P2,p3]) as a functuon of ¢ Of course, ¢ > 0 since only legal histones are under

event’ eenl

consideration here, and the third event occurred at ame ¢, =0. With that in mind. expand the value of

PopedutedPl.p2,p3}) as follows:

Pscheduled{{pl'pz'p3}) = P]’ea:tblr(PJrheduled'({pl'p3])q{pzl) (since PIa:fDL({pl‘pz‘pg })={p2])
= Pfea.nble('pfeamble(PsrheJuird({P3])u(pl } - (P: }) (since PlaleL({pl ‘p3 })={pl j)
= P/ea.nh/f(P/embu(menh/c('oxcheduxed(0)‘-’{P3})*’{pl Prip2i) (since P ony ((p31)={p3})
= P/m_nh,'(Pﬁmb[((l’f(m‘h[e(O\J{p3})u{pl No{p2h

= F/ea.nble(P_fmsxhlz(Pfea_nblc({[73 !)u(pl])u{ﬁz })

P[easible([p3 D= i
{p3}. if feasible({p3})
o, otherwise

Several feasibility conditions like this will have to be evaluated in the following section of the proof.
Therefore, a general result will be denved here that can be applied to any of the simple cases that follow.

Consider a phase p with automaton state components:

C-98 Scheduling Dependent Real-Time Activities

Value(p) = step(v.tp;)
ExecClock(p) = equired
AboriClockip) =0
ExecMode(p) = normal

Notice that pl, p2, and p3 all satsfy this profile at this point in the automaton’s examinaton of any
history that it accepts. Then ...
feasible({p}) = true iff (V)[{+ 21

rens) = timerequiredby(musifinishby(1,{p})) < (1-1,, ,))

Fort, ..>t ...
timerequiredbv(mustfinishby(1,{p}))
= rimerequiredby(9), 1f mustcompleteby(1.{p})=0
umerequiredby({ <normal.q>| q € mustcompleteby(t.{p})}), otherwise

mustcompletebv(t.{p}) = {q|{ge {p} A Deadline(q)<t]}

=0, if,qDL
{ph ife2ey,
Therefore,
timerequiredby(mustfinishby(t.{p}))
= timerequiredby(%), ifr<ty,
timerequiredby({<normal.p>}), ifr2ey,
=0, .if t<tp
lrequlred‘ ifr2 'pL

If feasible({p}) = true, then, by definition, foranyt 2 ¢,,.. ...

timerequiredby(mustfinishby(t.(p})) € (t—,,,.,)

For the cases where ¢ <1p, . this relation is trivially satisfied since the lefi-hand side of the relation is
cqual to zero and the nght-hand side is greater than or equal to zero by definition

(t=2t - (t—1t) 2 0). Forthe cases wheret 21, ...

event event

trequxred < I..r(vml

—! <1t

event required s oLt

required (since t21p,)
Applving this general resuit to each of the three phases under consideration yields:
» feasible({pl}) = true, iff ¢ < 2,1 +1) =1,-1

event

o feasible({p2}) = ue, ifft, < 2t —t, =1,

o feasible({p3}) = true, iff ¢ < (210—1)—{1‘1—1) =t,

even!

Using this information in the previously derived expression for £, ., ({p3}) vields . ..

Scheduling Dependent Real-Time Activities

Pftasxblr({pB }>

{p3),
Q,

= {p3}.
0,

P:chedu]ed({pl‘pz‘p3})

= Ffea.nblr(Pjea;zhie({p3 hoipl })\J{Pz b
Pfea.nhle(waib,'g(ou {pl Do {Pz .

= Pfeamble(sza.n'ble({pl .P3 })U{le)\
wasiblt(Pfeasible({pI })U{PZ b,

FOr !a < Intnr T
Pscheduled({pl'pz-p3 b
= Pfta.ﬂbl((Pfea.nbl(({pl))U{pz))
= Pftcut'b/e(ou{pz})
= Pf!miblz({pz})
=0

C-99

if feasible({p3})
otherwise

if0st <t

R event =~ a
ifr <t .
if<

lfo - Izven! < [a
1fza<rn‘w

1f0 < <
lfO - [(\-enr e Ia
1fta < pyoms

(since feasible({pl})=false for tacﬂtm)

(since feasible({p2))=false for t ,<t,,,..)

Consider the other case in the derivation of P, . .. {{pl p2p3}) where 0 <¢_ . <1, ..

C-100 Scheduling Dependent Real-Time Acuvities

chheduled({p[pz-p3)]
= Pfea:xble(P'emnblz({pl 103 Potph)

= Pfta.nbie((pl‘p3 }u{p?.)). if,e\ml—o (since Pfeamb/e((pl -P3 } '={p1‘93 1

Pfea.nble(szanhlz({pl Detp2]). if O <Inem
(since Pyl {p] P3D=P bt LP1D)

= [eathIe({pl‘pz‘p3 P if{evenl—o
me_swt((pl}u{pZ}). if0<t,,,. St,~1
(since feasible({pl})=true iff t,, ., S1,~1)
fmnb/ewU{PZ} ift -1<t, .. St,
= Pfeaxible({pl‘pz‘p:”)‘ if2, 00 =0
PIm‘ble({pl.pZ}). f0<t, . <St,-1
walbft((pz})' if{d-l <,evem"<"a
Pfea.nble({p] .P2.P3 b, if{neHX“O
Pfamb,‘(lpl 3R if0<t, . St,-1
(since /ea,nb/(({Pl pZ}) P/ea.ubl: {pl i)
P/mible([pz})‘ lf' -1 <trvcnl '
={pl}, ifr, .=0 (as shown previously)
ipt}, if0<t,,,,St,~1
(since feasible({pl|)=true iff 1, ., St,~1)
{p2}, ifla_1 U pventSta

(since feasible({p2\)=true iff 1, .. <t.)

Putting 1t all together . ..

Pschedultd({pl .p2.p3 b=
{pl}. if0<t,, 0 St,-1
{p2}, ife -l<t, .St
0. 1, <1,

Remember that, by definition:

SelectPhase({pl.p2.p3}) =
pickone(mustfinishby(DL (pmplistyP ., 1.4 'pL.p2.p31 D),
where
pmplist =tobescheduled(P ., ,,...4pl.p2p31))

As a consequence of these last two points:
SelectPhase({pl p2.p3|)=

<normalpl>, 1f0se,, oS0,
<normal p2>, ife ~t<t, St
<normal.nullphase>, ift, <t

The outcome of this portion of the analysis is that any number of 'request-phase’ events can occur to

Scheduling Dependent Real-Time Activities C-101

reiterate scheduling parameters of the three phases of concern. These events will be accepted by the LBESA
automaton and the PhaseElect state component wil have its value changed as indicated above for
PhaseElect = SelectPhase({pl p2,p3}). The (possibly empty) sequence of scheduling parameter
reiterations may be broken by a ‘resume-phase " event for phase PhaseElect at any ume.

For reasons similar to those offered earlier, this ‘resume-phase’ event may be followed bv any number of
other ‘request-phase’ events for the two phases that are not executing. Once again, these 'request-phase’
events may change the value of the PhaseElect phase component. In fact. the first 'request-phase’ event
occurring after the 'resume-phase’ may cause a change in value in PhaseElect, thus potentally triggering a

preemption.

Since it is difficult to follow a narratve description of all of the potential histones that may be accepted
by LBESA, the following approach is taken. Consider the diagram below, where each labeled item 1s an
event. "E*" indicates one or more occurrances of the expression "E", and "E™" indicates zero or more
occurances of the expression "E". (The labels "(Case X)" are merely used in the ensuing discussion to refer
10 specific branches of the diagram.)

El
E,
E3
[Emncralc].
E4
[En:m:rau:].
(Case I) (Case 1)
[Ercucrau:]‘ ES .
E6 [Ercn:raw]
[Ercm:nl:].
E,
[Ercucralt]
(Case III) (Casc IV)
[Emwmcr EE
E9 [Ercnzra!:].
[Er:ucrm].

where

C-102 Scheduling Dependent Real-Time Activities

E;: t, =0~ request-phase(step(v1, 2t,). t,+1) pl

E,: t, =0 request-phase(step(v2. 2t). 1,) p2

Ey 4= request-phase(step(v3. 2t.-1). t,-1) p3

E,: 1, resume-phase(pg,.) S

Eg s request-phase(step(0. =). 0) Pfirst
Eg: ts preempt-phase(pg,)

E,: t, resume-phase(p,_.) S

Eg: tg request-phase(step(0, =), 0) Peccond
Ey ty preempt-phase(p)

E icrac: TEQuest-phase’ reiterating scheduling parameters for

a phase other than RunningPhase

To interpret the above diagram, each history accepted by LBESA begins with the first event. E;, which is
on the first line of the diagram. To trace an individual history accepted by LBESA, begin with the top line
and proceed down one line at a ime. Where there are branches. choose one path or the other and continue
to move down through the diagram. The history may be terminated at any time3°

To demonstrate that the diagram is correct, that is, that it incorporates all of the legal histones that LBESA

will accept, consider the following rationale.

As was discussed earlier. a ‘request-phase’ event may be accepted at any time, as long as it serves only to
reiterate the already established scheduling parameters for a phase. As a result, the diagram ndicates that

such events, labeled (E 1. may occur between any other two events in a history.

reitcrate

As was also shown earlier, an examination of the preconditons of the various potential events indicates
that the only event that may be accepted after E,, E,, E;, and any other reiteranuve ‘request-phase’ events is
a 'resume-phase’ event to start the execuuon of the phase that is currently designated PhaseElect (as long
as PhaseElect is not the nullphase). Hence, E, can only be a "resume-phase’ event.

There are two possible courses that may be followed after E,: (a) the phase may be preempted (Case 1) or
(b) it may complete execution (Case [I). In the latter case. if the phase runs to completon, then it will
originate a 'request-phase’ event to signal that circumstance. This event will always be accepted because
its precondition is simply true. In Case I, examination of the precondition for a ‘preempt-phase’ event
indicates that a preemption can only occur if RunningPhase is not the same as PhaseElect and is not the
nullphase. The postconditions of event E, guarantee that RunmingPhase is not the nullphase. Hence, if a
‘request-phase’ event following E, yielded a value of PhaseElect different from RunningPhase, then,
according to the previous analysis of SelectPhase({pl.p2 p3}). the only possibilities are:

1. E, resumed pl, and PhaseElect subsequenty becomes either p2 or nullphase, or

2. E, resumed p2, and PhaseElect subsequenly becomes the nuliphase
Currently, the assumption is made that the required computation time for a phase ' known exacty.
Whenever the phase designated by PhaseElect is resumed immediately after a ‘request-phase” event, it wall

%At any ume after the third event, that is. By definition, the onfy histones being considered are those that begin with events £, £,
and £, i that order.

Scheduling Dependent Real-Time Activities C-103

be able to meet its deadline if it runs ununterrupted because a test of feasibility was camed out that venified
exactly that fact. However. if uime is allowed to elapse between the ‘request-phase” and the “resume-phase’
events. 1t is possible that it is no longer feasible to execute PhaseElect by the time it is actually irutated?!.
Subsequent ‘request-phase’ events serve to indicate that fact by selecting a PhaseElect other than
RunningPhase, thereby setaung the stage for a preemption.

Consider the next non-"request-phase’ event to be accepted by LBESA under Case II in the diagram. If the
first phase to execute, pg .. completes executon. it signals this fact by originating event Es. Then the
subsequent evaluation of either PhaseElecr=SelectPhase({p2,p3}) (in the case where p; . was pl) or
PhaseElecr=SelectPhase({pl p3}) (in the case where Prust was p2) yields
PhaseLlect = <normal, nullphase>. Therefore, no subsequent 'resume-phase” event can be accepted by the
automaton since the necessary precondition cannot be satisfied. Also. since RunningPhase = nullphase
following E. no new ‘preempt-phase’ event can be accepted either. So. except for reiterative ‘request-
phase’ events, no further events can be accepted in these particular histories.

In Case I. where the first phase 10 execute was preempted. this fact was indicated by event E.. As one of
its postcondiuons, E, set RunningPhase = nullphase. The next event in any history accepted by LBESA,
other than reiterative 'request-phase’ events, cannot be another "preempt-phase’ event because that would
require RunningPhase # nullphase. Therefore, if any event other than a reiterative ‘request-phase’ event is
to be accepted by LBESA, 1t must be a 'resume-phase’. In order to have such an event occur, PhaseElect
must, as a precondiuon, be non-nullphase. This can result from a reiterative 'requesi-phase’ event

according to an analysis similar to the one done above.

Finally, if E;, a 'resume-phase’ event. is accepted in a history, then the situatdon and analysis is almost
idenucal to the one that was examined after event E,, the previous ‘resume-phase’. Once again, the
resumed phase, p_. .4 1D this case, can either be preempted (Case II) or run to completion (Case IV), and
the circumstances for each of these outcomes is exactly analogous to those given earlier for E,. However,
the earlier examination of SelectPhase({pl p2,p3}) shows -hat there is no possible successor phase to
execute following either Eg or E;. In both cases. this is due to the fact that p, ., must be p2 and
PhaseElect = SelectPhase({pl p2,p3}) and PhaseFlert = SelectPhase({pl p3)) both yield
PhaseElect = <normal,nullphase>, which will not permit a subsequent 'resume-phase’ event to be accepted
by LBESA.

While the above arguments demonstrate that the earlier diagram incorporates all of the legal histones that
may be accepted by LBESA, they do not reveal all of the factors involved in making the histonies acceptable.
In particular, there are constraints on the times at which cenain events occur, above and beyond those that
apply 1o any legal history, that must be satisfied to obtain certain histones. For instance, depending on the

S'lnturtively, this can be thought of as reflecting a latency 1ssue. In effect, the scheduler determines what can be feasibly completed
in the svailable tume from the instant at which a scheduling decision is made. However, if the latency encountered in actually
dispatching the next phase 1s large enough, then, by the ume 1t has dispatched the phase, the set of phases that is feasible has changed.
Notice that 1t is possible to specify this laency and apply cerain restnctions o histones in order to mode! and accommodate the
latency. Also, 1t 1s possibic 1o alter the algonthm embedded in the automaton to handle this latency when it is determining PhaseElect.

C-i04 Scheduling Dependent Real-Time Activities

timing of events, there is the possibility of executing zero, one. or two phases duning the course of a history.
The following list specifies the time constraints that must be sausfied by various events to obtain given
tustones:
1. if the history includes event E, then p, may be either pl or p2i1f it is to be pl. then ¢
for the “request-phase’ immediately preceding E, must satsfy:
0< levent € [a_1

if pe istobe p2. thent, ., for the ‘request-phase’ immediately preceding E, must sausfy:

eent

t=l <t S0,
2. if the history includes event E6 (Case I), then either:
a. Ppy = Pl — 10 this case, t,, the ume at event which E occurred. must have sansfied:
-1 <1,
b. pg = P2 — in this case, t,, the ime at event which E, occurred. must have sausfied:
t, <ty
3. if the history includes event E (Case II). then either:
A Pp = Pl — in thus case, L5, the ime at event which Eg occurs. must sausfy:
Ig=1, + (1a+l)
since required computation time is known accurately.
b. Pr; = P2 — in this case. tg, the ume at event which Eg occurs. must sausfy:
!5 =+ (“
since required computation time 1s known accurately.
4. if the hustory includes evem.Ew thgn Prir Must be pl and Pecond MUS be p2. In addition,
t . en; fOT the ‘request-phase’ immediately preceding E7 must sausfy:
fa—l < I!VGN S 'd
5. if the history includes event Eg (Case IV), then tg, the ume at event which Eg occurs, must
satsfy33:
tg=ty+1,
since required computation ume is known accurately.
6. if the history includes event Eg (Case III), then. since p , = p2. t,, the time at event whuch E,
occurred, must have sausfied:

!a<l7

Once all of the histonies that are accepted by LBESA have been enumerated. their respecuve values can
also be enumerated. To that end, the table shown in Figure 4-7 puts all of the preceding pieces of the
argument together. [t lists all of the histonies accepted by LBESA that start with events E,, E, and E,. along
with their corresponding values.

*3This 1s actually a requirement of any legal hustory. Itus exphicily hsted here since 1t does point out an imponant time constraint
for the history that otherwise mught be forgotien.

33Once again, this 1s actually a requirement of any legal history and 1s only ncluded here for the sake of completeness.
**The value at this point will be: (a) v1,f Pra =Plandt St -Lbyviafp, =plandt, St oric;0 inail othercases.
$3Same conditions as in the previous case determine the actual value.

*The value at this point will be: fa) v2, if L St 0r(b)0, otherwise.

)
37Same condiuons as in the previous case determine the actual value.

Scheduling Dependent Real-Time Activities C-105
f Histon Value
‘?X‘E:'Es 0 ‘
! EVErEy(Eperae) 0 t
E)ExEy(Epyierae] Eq 0
E)EyEy (B erme] B (Erpriorace] 0 1
E E2Ey(E erae) “Es[Ereperae) Es 0,vl orv23"i
E EyEy(Eicrae) Ea(Ereverae) Es Ercrerae) 0.vl, orv235 ‘
BV E By erne) B Eriraie]” Erevernel” 0
El‘Ez'EJ'[Emmam].'E{[Emmam].'[Emmm]"Es 0 {
Ey ErEs (E rerme) Ea Ereiterme) Ereveraie) Ee Ereerae) o
E E2Ey(Epuerae) B (Ermuerae] Ereneraie) e (Erenerae] E- 0
EyExEy(Eeerae) Ea (Erenerate) Erencrae) “Eo (Erenerae] B Ereerae] ; 0
EEy Ey (B e Ea Ererne Erenerae) E6 Ervrael By Erpperae B | Oorv2
B EyEy(E erae] "Es(E perae) Ereerae) “Eo [Erucrae) B Erenerae) Eg 0 or v2? :

TE erieraie) i |
E By Byl perae) EalEmeraie) Erenerae) E6 (Epuerae] 'Er Brmerae]” 0
{Ereiterae]”
B EyEy(Eera) “EalE euerate) Ereerae) “Ee (Eenerae) Er Erenerae]” 0
L A ~ ;
E B By (B erme) “EsBrencrme) Erenerne) Eo (Ereneraie) E7 Ereperaie) | 0
B erierae) " Eo (Ereyierae) |

The maximum total value of any history accepted by LBESA is max{0.n1,12),

Figure 4-7: Histones Accepted by LBESA Beginning With E -E, E,

Since vi and v2

are both

greater than zero, this is equal to max(v1.2). Also, from the initial value density relations, it is known that:
vift +1 >v2/t,

Therefore,

C-106 Scheduling Dependent Real-Time Activities

vit, >v2:(1,+1) (note that 1 ,>0)
V21 + 1) = V2, w2 > 020 (since v2>0)
vie, > v2~(ta+l) > v2~ta

vl>v2
Consequently, the maximum total value for any of the histories in the table is max(v1.12) = v1.

As shown in the first section of this proof, DASA/ND accepts a history with value (v1+v3) starting with
these three events, while the maximum value for a history accepted by LBESA is vl. Therefore. there exists
a case in which DASA/ND accepts a history with greater value than LBESA, and there is no transformaton of
that history or alternate history dealing with the same phases and scheduling parameters that allows LBESA

| EndOfProof f

Since the DASA/ND Scheduling Automaton is equivalent to the DASA Scheduling Automaton when there

to obtain an equal or greater value than DASA/ND.

are no dependency considerations, the result extends to the DASA Scheduling Automaton as well.

4.3.3. Algorithm Tractability

This section examines the computational complexity of the DASA scheduling algonithm. Specifically, the
amount of time and space required for the DASA algorithm to select a phase to execute is derived. Of
course, the lower the complexity of a computation, the more feasible it is perform. In general, problems
that have exponential complexity are deemed intractable, while those that have a low polynomial
complexity are considered tractable.

4.3.3.1. Procedural Version of DASA

It is possible to use the definition of the ‘SelectPhase()’ funcuon presented in Section 3.2.1.3 to
investigate the computatonal complexity of the algonithm. However, it seems to be somewhat easier to
analyze 2 procedural definition of the function.

Figure 4-8 shows a procedural definition of the DASA scheduling algonthm.

Where possible, the variable names in the procedural definition are taken from the corresponding state
components in the DASA Scheduling Automaton.

The language emploved for the definition is similar to Algol or Pascal. The control statements
(if-then-else. for, and while) may delimit blocks of code and are explicitly terminated (with endif, endfor,
and endwhile, respectively) to avoid any ambiguity. The for statement is used 19 step through an ordered
list, one entry at a ume. The vanables in the for statement take on the values dictated by the current
element in the list. The exitfor statement causes control to pass to the statement following the innemmost for
loop enclosing the exitfor statement.

Scheduling Dependent Real-Time Activities c-107

SelectPhaseProc(PhaseList) { 1
cvariable declarations
schedule Sched. TentSched
real TotalTime. TotalValue, CurrentDeadline, DL
phase P, NextP. PniorP, CurrentPhase
ordered list of phase PhaseList. SortedList 6
mode SchedMode, Mode

. create an initiallv empty schedule
Sched = emptyschedule
. construct the dependency List and determine PV'D for each phase 11
for P in PhaseList
if (ExecMode(P) = normal) then
TotalTime = ExecClock(P)
Total Value = Val(P)
DependencyList(P) = emptylist 16
NextP = Owner(ResourceRequested(P))
SchedMode = normal
. follow chain of dependencies
whule ((NextP # nullphase) A (SchedMode # abort))
if (ExecClock(NextP) < AbontClock({NextP)) then 21
; update dependency list and adjust accumulated value and ume
DependencyList(P) = DependencyLast- <complete, NextP>
TotalTime = TowalTime + ExecClock(NextP)
TotalValue = TotalValue + Val(NextP)
else 26
DependencyList(P) = DependencyList <abort, NextP>
TotalTime = TotalTime + AbortClock(NextP)
. note: 'TotalV'alue' remains unchanged
SchedMode = abon
endif 31
. advance 1o next phase in dependency list
NextP = Owner(ResourcecRequested(NextP))
endwhile
Potential ValueDensity(P) = TotalValue/Total Time
else 36
Jif aborting phase. there is no value to be gained directly
PotenualValueDensity(P) = 0
endif
endfor
. form a sorted list of phases according to potential value densirv 41
;. (highest PVD firstin list; lowest PV'D last)
SortedList = SocnByPVD(PhaseList)

Figure 4-8: Procedural Definition of DASA Scheduling Algonthm

The following simple functions are used in the algorithm definition:

Insert(element, orderedlist. key)
inserts element in list orderediist at the position indicated by ke, if there are already
entries tn the list with key value key, insernt elemens before them.

C-108 Scheduling Dependent Real-Time Activities

. look at each phase in turn
for P in SontedList
. if it has any potential vaiue. attempt to add it to schedule
if (PotenualValueDensity(P) > 0) then
. onlv add completion if it hasn't already been heduled
if (<complete, P> & Sched) then
. get a copy of the schedule for tentative changes
TentSched = Sched
; tentatively add 'P’ and its dependency list 1o the schedule
Insert(<complete, P>, TentSched, Deadline(P))
CurrentDeadline = Deadline(P)
CurrentPhase = P
; tentatively add phases in dependency list to schedule
for <Mode, PriorP> in DependencyList(P)
if (<Mode, PriorP> € TentSched) then
. see if the phase is scheduled soon encugh
DL = Lookup{<Mode, PriorP>. TzntSched)
if (DL < CurrentDeadline) then
. it is; nothing else to do so exit the loop
exitfor
else
Remove(<Mode, PriorP>, TentSched, DL.)
endif
endif
if (Mode = normal) then
CurmrentDeadline = Min(CurrentDeadline, Deadline(PriorP})
else
. ‘CurrentDeadline’ remains unchanged
endif
. tentatively add phase to sckeaule
Insert(<Mode, PricrP>, TentSched, CurrentDeadline)
endfor
. clean up tentartive schedule, as required
examine current simplifications; make less brute force
; test the feasibiliry of the :entative schedule
if ‘Feasible(TentSched)) then
, incorporate all of the tentative changes into the schedule
Sched = TentSched

else
. 'Sched’ remains unchanged
endif
endif
endif
endfor

. select first phase to execute
return(First(Sched))

46

51

56

61

66

76

31

%6

Figure 4-8: Procedural Definion of DASA Scheduling Algonthm. continued

Remove(element, orderedlist, key)

removes element from list ordered/ist at the posiuon indicated by key: if element 1s not

present at that position in the list, the funcuon takes no acuon.

Scheduling Dependen: Real-Time Activities C-109

Lookup(element. orderedlist)
returns the kev value associated with the first occurance of ¢iemens tn list ordered!: <

First(orderedlist) retumns the first element in list orderediist.

SonByPVDiphaselist)
returns a list oi phases ordered by decreasing PVDLif two or more phases have the
same PVD, then the phase or phases with the greatest required execation ume
(ExecClock) appear before any others with the same PVD

Feasible(orderedlist)
retums a boolean value (rrue or falser indicaung whether the schedule represented by
orderec’list. an ordered list of mode-phase pairs. constitutes a feasible schedule. as
defined previously (by the function feusible()1n Secion 221 3.

Minix, v} returns the mimmum of x and ».

Brefly. the procedure consists of four stages. First. cach phase ts examined to determine its potenurl
value density and to construct 1ts dependency hist. Second. the phases are sorted and placed into an ordered
list manked by their PVD. Next. a schedule is consiructed by attempung to add each phase. along with all of
the other phases in its dependency list. to the evolving schedule. If this addivon produces a feasible
schedule. then the phase s included 1 the schcdule: otherwise, it is not. (Some simphificauons of the
evolving schedule occur at thus pomnt as well.; Fmnally, after all of the phases have been considered for

inclusion in the tentauve schedule, the schedule’s first e'zment 1s selected for immediate exezuiion

The scheduie ceated by the SelectPhaseProc() procedure 1s an ordersd hist of mode-phase paurs, each
placed according to the deadline 1t must meet. So. for instance, a phase tha” must meet a deadimne at ume
t =1 will precede a phase that must meet a deadline at ume ¢ = 2 1n the schedule If more than one phase
must meet a single deadline, then the mode-pha.e pair that was added to the schedu’» last will be executed

first.

Notice that the deadline a mede-phase patr must meet is not nccessanly the deadhine associated with that
phase. In fact. the phase may peed to meet an carher deadline 1n order 1o enable anothier phase to mee® its
time constraint. Whenever a phase i considered for insertion in the tentative <chedu’e <ine 47 of Fipure
4-8). 1t 1s scheduled to meet s own ume constraint. However. all ot wie mode-phase pairs an 1ty

dependency list must exccute before it can excoute, and. therefore, must precede 1tin the schedule.

The vanuble CurreniDeadline 1s used in SelectPhaseProciy 1o keap track of this type of scheduling
consideravon. Trutially, 1t 1s set to be the deadhine of the phase to be tentativels atded 1) the schedtde
Thercatier, any mode-phase pair that has a later tme o~ nstrant than CurrertDeadiine 1< required 1o ment
CurrentDeadline. 1f, however. a mode-phase parr has a uphter deadhne than Currentliradiine, then 1t s
scheduled 1o meet the vghter deadline. and CurrentDeaditne s advan.ed to that tme since all of the

modc-phase pairs l2ftin the dependeacy I must complete by then.

The major data structures used by SelectPhaseProcty are:

1. a Phase Control Block /PCBy for cach phase 1o be scheduled -t contamns o phae 1d. the
necessary scheduling parameters FaecMode, ExecClock, AhortClock, Degdline. Value, the
names of any cumrently requested or held <hared resources, a reference to o dependency hisg,
and a reference tu anothier phase that s ed 1o chain PCBs topethzr to fomm the Pha v L,

C-110 Scheduling Dependent Real-Time Activities

2. PhaseList is simpiy a reference to the first phase in the list; subsequent phascs in the list are
found by following the phase reference field in the PCBs:

3. SortedList is simply an ordered list of references to the PCBs;
4. dependency lists are linked lists of mode-phase pairs. each of which refers 10 a specific PCB;

S schedules are ordered lists of mode-phase pairs; although many data structures may be
sufficient, assume a balanced binary tree is used here8 (for example. a 2-3 wee); then insert,
remove, lookup and find minimum operctions can ail be done in O(log N) time and O(N)
space for a set of N phases.

433.2. Proof: Procedural Version of DASA Is Polynomial in Space and Time

Given the definition of SelectPhasefroc(). it is possible to demorstrate that it requires an amount of
space and ume that is proportional to a polynomial power of the size of the problem: the number of phases
requesting to be scheduled.

Theorem 4: Given N phases to be scheduled using the Dasa scheduling algorithm, show that
SelectPhaseProc() will determine the first phase 1o execute in O(~* log N) time.

Proof. To determine the time required by SeiectPhaseProc(). examine the amount of time required for
cach of its component steps:
1. create an initially empty schedule (lines 9-10): O(1). this requires constant ame for virtally
any list structure.
2. construct the dependency list and determine PVD for each phase (lines 11-40): O(N?), since:
a. the for loop begun at line 12 is executed N umes. once for each phase;

b. if the ExecMode of the phase is not normal. then the loop body takes O(1) time to
execute (it 1s a single assignment statement, lines 37-38), however, if the ExecMode is
normal, then loop body takes O(N) to execute since:

L. lines 14-18 require O(1) time;
il. because there are no deadlocks, there can be no circular dependency lists:
therefore, the while loop at line 20 will be executed less than N times, and each
time lines 21-33 require O(1) ume; hence the entire while loop requircs O(N)
time 10 execute 1n the worst case;
iii. line 35 requires O(1) time;
3. form a sonted list of phases according to potential value density (lines 41-43): O(~logy) if any
of a number of standard sorting algonthms are used (for example. heap sort).
4. tentatively add each phase in tumn to the schedule (lines 44-87): O(.\'z log N). suce:
a. the body of the for loop at line 45 will be executed N times, once for each phase;

b. the loop body takes O(1) ume to execute if the phase’s PVD is less than oi equal to
zcro or 1f the compleuon of the phase has already been scheduled: otherwise, it
requires O(N log N) because:

. copying the schedule (lines 50-51) can be done 1n QiN) tume 1n a
straghtforward manner,

Yiven a specific tvpe of application, experence may indicate that there are betier data structures for schedules. For example, (f
there are typically only a few phases ready to exccute, then a simple iinear, iinked list may be sutficient. The tree structure was
sclected for gencrality and because it will accommodate Jarge numbers of phases and dependencies gracefully.

Scheduling Dependent Real-Time Activities C-111

it. inserting the complenon of the phase into the schedule (lines 52-53) can be
done in O(log N) ume since there are at most 2N mode-phase pairs in the
schedule (corresponding to an abort and a normal completion for each of the N
phases):

ili. setting up some vanables for bookkeaping (lines 53-55) requires O(1) time:

iv. the for loop (lines 56-75) requires O(N log N) ume since the loop will be
executed fewer than N tmes ard each execution will require O(log N) time to
perform insert, remove, and lookup operations on the tentauve schedule:

v. testing the feasiblity of the tentauve schzdule (Lines 78-79) requires O(N log N)
time since it can be done by looking up each of the scheduled mode-phase
pairs in order, summing execution requirements, and comparing those
requirements to the actual available time; this requires N lookups. each
requiring O(log N) ume;

vi. incorporating all of the tentative changes into the schedule (lines 80-81)
require O(N) time; this can be done by copying the N nodes that comprise the
tentauive schedule over the existing schedule entries;

S. select first phase to execute (lines 88-85): O(log N) ime

Therefore. the overall time to execute SelectPhaseProc() is O(N2 log N).
t EndOﬂ’roofl

The preceding proof uses straightforwand data structures and algorithms. An actual implementation may
be able to improve on these. For instance, a number of the calculatons performed to compute the PVD for
cach phase could be avoided if it was noted that the phase and its dependency list had not changed since the
last execution of SeleciPhaseProc(). Such an optimization trades storage for speed. Other similar

opumizations may bning addinonal savings.

Theorem 5: Given N phases to be scheduled using the DasA scheduling algorithm. show that
SelectPhaseProc() will determine the first phase to execute using 0Ny space.

Proof. The space required for SelectPhaseProc() consists of:
1. a PCB for cach phase to be scheduled — this requires O(N) space:

2. two schedules, Sched and TentSched, each of which is a balanced binary trec with at most 2N
nodes — this requres O(N) space;

3 space for SortByPVD() to sont the phases (actually, it will sort a set of keys that refer to
individual PCBs) — this requires O(N) space,

4. space for each phase's DependencyList — this requires O(N) sgace for each phase in the
worst case, thereby requinng O(~?) space overall in the worst case S,

S. various scratch vanables — this reyuires O(1) space.

Putting thesc requirements together, it is scen that, in the worst case, SelectPhaseProc() may require
o(~?) space.

3*This would truly be unusual. In order to have very long dependency lists for cach phase. the sysiem would have to be ncarly
deadlocked and e-ery phasc would have 1o be closc enough 1o completing 1ts normal execution that it would lake longer to abort than
to let it complete normally.

c-112 Scheduling Dependent Real-Time Activities

Notice that there is no mention of the storage required to track the cwnership and state of each of the
shared resources in the system. This is ignored because it 1s informauon that 1s always mantained by the

svstem for any resource management or scheduling algorthm. No additonal cost is imposed by the DASA

algonthm.
' EndOfProof

4.4. Notes on Algorithm

The proofs presented in this chapter have allowed the behavior of the DASA scheduling algonithm to be
wimessed under specific circumstances, providing more understanding of the algorithm. This. coupled
with the algonthm’'s formal definition, may suggest situatons where DASA may exhibit unusual or
unexpected behavior.

Each of the following sections discusses one such situaton and the attendant algonthm behavior. Where

appropriate, methods for handling the situation are also mentioned.

4.4.1. Unbounded Value Density Growth

While value density and potential value density are appealing because they allow the application to make
the best use of the processor tme consumed by each phase, they also display an interesung behavior when
the required computation time to complete a phase approaches zero: the value density. which is value
divided by required computation time, becomes unboundedly large.

This can have some unexpected effects, since — given a sufficiently shont required computauon ume —
DaSA will favor executing a phase with a very low actual value over a phase with an extremely high actual
value that requires more time. In fact, this is arguably the proper decision to make., given that the
scheduler’s objective is to maximize total value to the application, 10t to execute the phase with the

greatest value.

When assigning values to phases, an application designer may wish to insure that. under any
circumstances, a given phase will be selected for execution over another phase. In order to do thus, the
designer must insure that the value density of the desured phase is alwayvs the greater of the two value
densities. However, if the value density can grow unboundedly large. then, 1n general. there 1s no way to

guarantee that the value density of one phase will always be greater than that of another phase.

A few facts mivgate this problem. though. For one thing. required computation ume will never reach
zero because 1f it did the phase would be done and would nut be involved 1n scheduling decisions.
Therefore, there is a limit on how small the required computation time can be. Hence there 1s also a bound
on how large a value density can grow. The application designer can use thus bound to assign values

appropnately.

Scheduling Dependen: Real-Time Activities C-113

If that bound is deemed to be too large. then a smalier bound can be imposed by specifving a minimum
amount of computation time that may be requested for completing a phase. If a required computation time
parameter should ever be smaller than this minimum. then the minimum value should be used in its place

when applyving the DASa scheduling algorithm.

Evaluating the value density associated with a phase onlv once. at the time of the phase’s initiation,
would also have the effect of avoiding the practically unbounded growth of value densities. The basic
information encoded into the value density metric would remain the same and would be captured
effecively. However, the benefit that arises from evaluating the value density for each schedulig decision
would be lost — that 1s. there would no longer be a nsing value density to indicate that for a relatively

small investment of processor cycles. a large return in applicauon value could be realized.

4.4.2. Idle Intervals During Overload

DASA is not optimal; it is a heunstic that does well according to imponant metrics for the class of
real-time supervisory control applications. However, there are overload situations where it can be less
effective than other scheduling algorithms.

DASA constructs a schedule by sucessively adding activities that have the h.ghest PVDs. In this way, each
time an activity, along with any other activites on which it depends, is added to the tentative schedule,
DASA is getting the greatest amount of value for the pro.essing cycles that are then reserved for those
activities. (If any other activity could yield more value for those processor cvcles. it would — by
definition — have a higher PVD. But all of the activities with a higher PVD that can be feasibly scheduled
have already been added to the tentauve schedule.)

LBESA adds activities to a schedule according to the neamess of their deadlines: and. 1n case of an
overload. it sheds the activites with the lowest PVDs until a feasible activity is obtained. As shown in
Section 4.3.2.4, LBESA may shed some activities that can be included in a schedule. This can result in

LBESA utnhizing fewer processor cycles thun DASA in a given situation.

The factors discussed in the previous paragraphs can collectvely vield a situation where LBESA can
produce a schedule representing a higher value to an application than can DASA. For instance. consider an
application consisting of three activiues, each of which has only a single phase The phases are designated
Py Py and py, respectively. Furthermore, assume that at ume 1 = 0 the foliowing conditions hold (using the
notauon for the scheduling automata):

C-114 Scheduling Dependent Real-Time Activities

Deadline(p,) < Deadline(p,) < Deadline(py)

-

PVD(p,) > PVD(p,) > PVD(p)
ExecClock(p|) < Deadline(p)
ExecClockip,) > Deadline(p,)

ExecClock(py) < Deadline(p,)

ExecClock(p,) + ExecClock{p;) > Deadline(p)

Among other things, these conditions indicate that phase p, cannot be completed by its deadline. even if
no other phases are executed. Also, either phase p, or phase p,, but not both, can meet their deadlines.

When DASA is presented with this situation, 1t constructs a tentative schedule by examining each phase in
order of decreasing PVD. Consequendy. it will:

1. add phase p, to the (ininally empty) tentauve schedule, determine that the schedule is not
feasibie. and shed phase p,

2. add phase p, to the tentative schedule and determine that the schedule is feasible

3. add phase p; to the tentative schedule, determine that the schedule is not feasible. and shed
phase Ps

This results in a tentative schedule that contains only phase Mathip,].

When LBESA 1s presented with this situation, it constructs a tentauve schedule by examining each phase in
order of increasing deadline. Consequently, it will:
1. add phase p, to the (ininally empty) tentauve schedule and determine that the schedule is
feasible

2. add phase p, to the tentauive schedule, determine that the schedule is not feasible, shed phase
p;. determine that the schedule is stll not feasible, and shed phase p. (leaving an empty
tentative schedule)

3. add phase p, to the tentative schedule and determine that the schedule is feasible
Thus results in a (entative schedule that contauns only phase p;.

Comparing the results, whenever the value associated with phase p, is greater than that associated with
phase p,. then LBESA will accrue a higher value than DASA. In addition. this implies:
Valuelpy) > Valuetp)
— ExecClockips) x PVD(py) > ExecClockip) x PVD(p,)

ExecClockip,)
= —————— x PVD(py) > PY'Dip) { > PV D(p,). from above]

— ExecClock(py) > ExecClockip,)

For the DAasA-produced schedule, the processor 1s 1dle for Degulinetpy) = ExecClockip,y units of ume,
while for the LBESA-produced schedule, the processor 1s idle {or Deadline(py) - ExecClockipy) units of
ume. Therefore. the schedule produced by DASA has more 1dle ume than the one produced by LBESA —

Scheduling Dependent Real-Time Actinvinies C-115

even though there 1s an overload and two of three phases that were known to the scheduler were shed.
Consequently. by executing an acuvity with a lower value density for a long enough tme. while the DASA
scheduler is forced to leave the processor idling. LBESA can accrue a greater value than DASA for an

application.

4.4.3. Cleverness and System Dynamics

The applications of interest for this rescarch are by nature dvnamic. A scheduler must be able to react
dynamically in order to produce effective schedules for these applicatons

Yet there is a balance to be struck. The more informauon that is used to make scheduling decisions, the
better-informed the decisions are. This typically results in better scheduling decisions. On the other hand.
each decision is made based on the best information available ar the time of the decision. At any point
thereafier, circumstances may change — a new request may be made for a shared resource or new activities
may amve (o be scheduled — demanding that new scheduling decisions be made, possibly resulting in

undoing some previously accomplished work.

Intuitively, the more dynamic and unpredictable an application is, the less appropniate clever (read
“"time-consuming™) scheduling schemes are. The actual dividing line for this decision is not clear in
general. The simulations in the following chapter demonstrate DASA’'s performance in various situatuons
and take into account the amount of time required to make scheduling decisions. In fact. the simulator
could be used to determine the effectiveness of the DASA scheduling algonthm compared to another
algonthm for any applicauon.

Scheduling Dependent Real-Time Activities C-117

Chapter 5

Simulation Results

The formal analysis presented in the previous chapter shows that the DaSa algonthm possesses some
desirable properties. These properties were demonstrated by companng the behavior of DASA to other
known algonthms. However, this analysis did not evaluate the use of the DASA algonthm in particular
situations. nor did 1t quanufy the gains that could be realized by using DASA to schedule specific workloads.
Simulations were employed to examine these issues, and that work is described in this chapter.

Secuon 5.1 discusses the design and implementation of the simulator used to evaluate DASA and other
scheduling algorithms. Section 5.2 presents results generated with the simulator to evaluate the
performance of the DASA scheduling algorithm. Finally, Section 5.3 hypothetcally charactenzes two
real-ime applicatons and outlines how the simulation results can be applied to esumate how well DASA
would schedule these applications.

5.1. Simulator Design and Implementation

The first part of this section outlines the set of requirerents that the simulator had to meet. The other
parts describe the design that was adopted and discuss significant implementation issues.

5.1.1. Requirements

Fundamentally, the simulator must allow DASA to schedule a vanety of workloads. In fact. there are a
number of ways in which this may be accomplished. Therefore. to guide the simulator development, the

following general requirements were adopted:

1. suppcn a vanety of workloads conforming to the computational model presented earlier —
that is, the simulated workload represents a real-time supervisory control anrlication, which
is composed of a number of activites, each of which may have one or ruvie computational
phases. The acuvities may share resources as outhined previously 1n thus work. And all of the
assumptions concerung the informauon that is available to the scheduler, such as the amount
of computation ime to complete each phase. conunue to hold. The set of applications that
can be run must be nch 1o order to allow a significant range of applications to be explored.

2. offer standard statistical distributions for use by the application — to examine the behavior of
a scheduler under general condiuons. it is often converuent to assume that events occur
temporally according to a standard statstical distnbution, such as a nomal or a Poisson
distnbution.

3. incorporate uscful metncs and gather staustics — the metncs are intended o aid 1n the

C-118 Scheduling Dependent Real-Time Activities

evaluation of scheduler performance. For instance. the number of time constraints satisfied.
the number not satisfied. and the total applicanon-specific value accrued are all
straightforward examples of useful metncs that the simulator should support.

4. allow evaluation of multiple scheduling algorithms and resource management policies — the
pnmary objective of the simulations is to compare the performance of DASA with that of other
algonthms. Therefore, the simulator must accommodate a set of well-known scheduling
algonithms, including priority, deadline, and best-effort schedulers. In additon. since DasAa
also makes all of the shared resource management decisions, the simulator must provide
several alternative resource management policies, including FIFO and deadline queueing for
shared resources that are not available.

S. provide a wace of the scheduling events and decisions made during a simulation — this
informauon is useful for at least three reasons: (1) it allows a detailed inspecuon of scheduler
behavior to identify specific beneficial or detrimental decisions, (2) it makes available raw
data that may be processed to generate other meaningful statistics for any specific scheduler,
and (3) dunng the inital implementation or subsequent modification of a scheduling
algorithm, the event trace can be examined by hand or by machine to demonstrate correct
behawvior.

6. possess the flexibility to adapt to changing requirements or to augment the imitial capabilities
of the simulator — since the simulator is used to examine algonthms under a wide range of
circumstances and the appropriate metrics are not necessarily known in advance, flexibility is
desirable. In additon, if the simulator is to be useful over tme, it will have to be able to
accommodate new algorithms that will be developed. which may or may not resemble those
that already exist. By choosing internal interfaces carefully, this is not t0o demanding a
requirement.

The simulator developed meets all of these requirements, as explained in the following sections.

5.1.2. Design

The simulator design compartmentalized major functions so that differemt workloads and scheduling
algorithms could be accommodated. As shown in Figure 5-1, the simulator features several independent
parts:

1. a set of shared resources,

2. a set of application activites, each potentially compnsing a seqeunce of computational phases
govemed by a time-vaiue function, that may access the shared resources,

3. a Simulaied Operating System. including an /ntegrared Scheduler — that is, a scheduler that
not onl, :nanages processor cycles, but also controls access to all shared resources, and

4. an Activity Generator that adds new activiues to the applicauon.

5.1.2.1. Activities and the Activity Generator

The Activity Generator initiates the application by creating the first activity or activities. It may

subsequently create others while the simulated application 1s executung.

The activities compnising an application may etther be chosen from a library of existing actuvities or they

may be written specifically for the applicanon. In this way, any activity can be included in an application.

In addiuon, customized Activity Generators can be written to instiate these activities at any time, obeying

Scheduling Dependent Real-Time Activities C-119

Shared Resources

Application Activities

Activity | c o o
Generator
X Simulated Application

\ * Simulated OS

Integrated Scheduler

Figure 5-1: Logical Structure of Simulator

any coastraunts tmposed by the actual application being simulated. Therefore, this scheme will support
arbitrary workloads.

The activites may mimic computations performed by real applications or they may consume processor
cycles and access shared resources in pattens similar to actual or potential applications.

Whenever necessary. an acuvity will interact with the Simulated Operating System to acquire specific
services. The requests made to the Integrated Scheduler. such as requesting the start of a new
computational phase or requesting access to a shared resource, are of particular interest for this research.

5.1.2.2. Integrated Scheduler

The interface to the Integrated Scheduler conforms to the interface described in Section 2.3.2 for the
General Scheduling Automatun Framework, incoiporating scheduling events that are concermed with both
processor cycle management and shared resource management.

Scheduling algonthms are embodied in Integrated Schedulers, and different scheduling algorithm; can be
compared by executing the same application using various Integrated Schedulers.

The requests made of the Integrated Scheduler can naturally be divided into two groups: (1) those that
deal fundamentally with phase execution (that is, 'request-phase,” "abort-phase,’ ‘preempt-phase,’ and

C-120 Scheduling Dependent Real-Time Activities

‘resume-phase’) and (2) those that deal fundamentally with resource management (that is, ‘request’ and
‘grant’). Traditionally, these two groups of requests have been handled by two different entides — the
scheduler and the resource manager. respectively. The simulator design at the highest (interface) level
hides that distincdon. Intemallv, however, for typical scheduling algonthms requests are routed to the

scheduler or the resource manager.

On the other hand, DASA is an integrated scheduling algonithm in this sense. and so all of the requests

originating from application activities are directed to the DASA scheduling module.

5.1.3. Implementation

Given a design, the implementation of the simulator raises several new issues. inctuding the selection of
the tools to build the simulator, the languages to be used, the interface presented to the experimenter, and
the structure of the implementation. Scme of the more interesting aspects of these issues are discussed in

the following paragraphs.

5.1.3.1. Approach: Build from Scratch or Adapt an Existing Simulator

There are several different approaches that may be used to produce the simulator descnbed above. and
selecting one of them is the first major implementation issue to be resolved. For example, the simulator
may be custom-but from scraich. This approach allows the simulator 10 be precisely tailored to meet the
goals of this investigation. On the other hand. if an existung simulator could be found that 1s simdar in
purpose to the desired simulator, then it might be modified to satisfy the present goals. Possibly, this could
be done quickly to generate useful results.

In fact, the approach used — wnting the simulator using SIMSCRIPT 115, a programming language
intended for st ‘lations — falls between those two extremes. It builds on previous work, while allowing a

large degree of customization.

SiIMSCRIPT provides a basic framework and a number of useful libranes, including a random number
generator and a full complement of probability distributions. Using SIMSCRIPT obviates the need to
reimplement and debug these features for a simulator. [n addition, SIMSCRIPT provides a programming
abstraction called a process that is well-suited to medel an activity. These processes may control their own
{virtual) execution, as well as that of other SIMSCRIPT processes. The code that compnses the Integrated
Scheduler is executed by pro~esses when they imtiate a scheduling event. The scheduling algonthm
dictates the resulung outcome: either the executing process will continue 10 run or 1t will block itself while
unblocking 1ts successor. Programming constructs exist 10 consume {virtual) execution time, and

SIMSCRIPT manages the advancement of virtual ime.

SIMSCRIPT also supports a programming abstraction called a resource to cmbody shared resources.
However, this abstraction. although providing the services of a typical resource manager, was not flexible
for the purposes of this work, where the resource management decisions are more closely tied to scheduling

decisions. Therefore. some of the resource features of SIMSCRIPT we.e superceded for these simulauons.

Scheduling Dependent Real-Time Activities C-121

The use of a simulation programming language provided sufficient freedom so that the Integrated
Scheduler could be implemented in the modular fashion described in the design discussion. If an existing
simulator had been chosen as the vehicle for this work rather than a simulaton language. then the
organizational structure imposed by the simulator might have precluded this possibility.

5.1.3.2. Source of DASA Implementation

The version of the DASA scheduling algorithm that was included in the simulator was adapted from the
procedural version of the algorithm presented in Section 4.3.3.1. A procedural version had 1o be used.
since SIMSCRIPT is a procedural language. A straightforward tanslation convened the Section 4.3.3.1
version into a SIMSCRIPT version.

5.13.3. Single Scheduler for Simulation

The simulator uses only a single scheduling algonthm (and associated resource queueing discipline) for a
given simulatuon run. The simulator allows the arrival of new activities and phases 10 be regenerated
exactly for specified simulation runs. Therefore, comparing two scheduling algonthms requires two
different simulation runs, one for each of the algorithms. Both runs present identical input 1o the
schieduling algorithms. A subsequent examination of the statistical metrics and the scheduler performance
for each run can then reveal which algonthm was more effective in the simulated situation.

5.1.3.4. Simulator Display Messages

By defauli, the simulator displays all of the key information regarding a simulauon run to the
expenimenter. This includes a imestamped message announcing the armival of each new computational
phase that must be scheduled, along with its ume constraint. required execution time, value, the number
and identty of the shared resources that it will require, and the ume interval between each pair of shared
resource acquisitons (in terms of acrual execution time, not real ime). Notice that although the simulator
prnts information about shared resource needs of a phase at its outset, this informauon 1s not available to
the scheduling algorithms when the phase 1s iniually presented to the scheduler. Rather, each new resource
request 1s made by the phase at the moment the resource is nceded. Only at that point 1s the scheduler
made aware of the need for that parucular resource. The information about all of a phase’s resource
requirements is pnnted out whea the phase imually amves only as a minor user convemence — it allows

all of the requirements information for the phase to be presented together in one place.

Other time-stamped messages are displayed to the experimenter each tume a resource is requested or

granted or a phase is preempted, resumed, or aborted.

Additionally, a simulation profile is pnnted that identifics the scheduling algonthm and rescurce
queueing discipline employed, the number of shared resources available, and other workicad specific
statistics, such as the average interammval time between nhases or the average required execution ume for
each type of phase.

Finally, a statistical summary of the simulation 15 displayed at the conclusion of the run. It pnnts gencral

C-122 Scheduling Dependent Real-Time Acuvities

statistics including the total number of phases. the number that met their time constraints. the total value
represented by all of the phases*®, and the value actually accrued by the scheduler duning the simulation.
Other statistics that are of interest for a specific scheduler or workload can also be displaved at the

conclusion of the simulation.

All of the messages displayed to the expenimenter can be redirected to a file to record the simulation
results for later analy;is. In this case, the experimenter is offered a summary cf the simulaton in addition
to the log file.

5.1.3.5. Modifications

There are a number of modifications that may be made to the existing simulator, and these modifications
can te divided into two groups. First, there are the changes that the simulator was designed to
accommodate, for instance, the additon of a new scheduling algonthm or a new resource queueing
discipline. Second, there are changes that may be anticipated. but ~ere not specifically provided for in the
simulator. Extending the simulator to handle multiprocessor scheduling is an example of the latter tvpe of
change.

Provisions have been made to facilitate the anticipated modifications of adding new scheduling and
resource queueing policies. To add a new policy, a set of routines must be wntten. one routine to handle
each scheduling event. These routines are named according to an existing convention. The name of the
policy 1s added to the menu of policies available to the expenimenter. And finally, the new routnes are
compiled and linked with the existing simulator.

Since the information required or the data structures used by different scheduling poiicies may vary
significantly, new data fields and structures may be associated with each activity or computational phase.
Once again, a naming convention has been adopted for labeling these fields and structures to avoid
conflicts with existing fields and structures.

The simulator has been structured careful.; so that modifications that could not be anticipated precisely
can be handled gracefully. There 1s no single point 1n the simulator where all statistics may be gathered
and processed. As new statstics are defined. 1t 1s likely that at least some of them will have to be inserted

in code at locarons determined strictly by the scheduling algonthm being examined.

Preparations have been made for some other potential modificanons. Some data structures have been
defined to be more general than necessary for the purpose at hand. For instaice, the number of applicauon
processors that are beiny scheduled 15 a vanable and there is an array containing the relevant state for each
of the currently executing acuvities. Of course there is only one execuung activity under e model being

investigated by this work. However. in the future the simulator framework .nay be able 10 accommodate

“Nouce that nt may not he possible to attain this vaiue, even with complete knowledge ~f the phases and therr requirements.
Ataining this lotal vaiue may be impossibie due 1o in<utiicient processing crvcles or resource avmlabihty for seme portion of the
simuiation. [tdoes serve as a clear upper bound on the value that may be cbtauned by any scheduier

Scheduling Dependent Real-Time Activities C-123

multuprocessor scheduling. At that ime, since many, if not all, of the scheduling algorithms will have to be
modified to handle muluprocessor scheduling and use the simulator’s data structures 1n a more general
way, 1t 1s clear that a great deal of work 15 required to make this modification to the simulator.

5.2. Evaluation of DASA Decisions

This section evaluates the decisions that DASA makes compared to the decisions made by other
scheduling algorithms and resource queueing disciplines. A general, parametenzed workload is used to
exercise the simulator with varving degrees of processor utilizaton and varying numbers of shared

resources.

5.2.1. Methods of Evaluation

The utility of a scheduling algonthm may be demonstrated in a number of different ways. The following
paragraphs deal with four major approaches that correspond to four different workload sources.

5.2.1.1. Execute Existing Applications

Perhaps the most compelling method would be to emrploy the algorithm in an instrumented. production
system and compare the system performance directly to its peformance using other aly nthms. Using this
approach would yield the most direct, relevant information regarding the applicability of the scheduler for a

given application.

There are three major problems with this direct approach. First, aithough it definutely evaluates the
performance of the scheduler for a specific application. it is not clear that the information gathered can be
apphed to any other applications. and if can, under what circumstances. Since this work is addressing a

general problem. the ability to make statements that apply to a general class of applications 1s desirable.

If a wide range of exisung applications can be executed directly. this problem can be eliminatzd and more
general results can be denved. However, since many real-time svstems today are stull custom-designed
with customized or propnetary operating systems, finding a large number of real applications that execute
under the same operating system may be difficult. Altematively. modifying the schedulers of several
different operating systems may be very difficult lomstically.

The second major problem with the direct approach 1s mure specific to the DASA algonthm: the
algonthm is significantly different than those that are used in practice today. and it expects that the
application will provide the scheduler with more information than is normally the case. (Specifically, the
scheduler should be given an esumate of the required computation time needed to execute each new
computational phase.) Althougb :his information is often known to applicaton designers and
implementers, it 1s not communicated tc the scheduler. As a result, the interface to the scheduler that the
application sees is different for the DASA algonthm than for traditonal algunthms. This requures tha:
every application used must be altered to provide that additonal informatinn to the scheduler, possibly long

after the people who knew the information are no longer available or adle to provide it.

C-124 Scheduling Dependent Real-Time Activities

The final major problem results from the fundamental difference in philosophy between traditional
real-time systems and the more dynamic systems that could employ a scheduling algonthm such as DASA.
Traditionally, many real-time systems are designed to be quite specialized with minimal overhead resulting
from operatng system functions. In fact, the designers of these systems attempt to eliminate operaung
system functions insofar as possible. often either reducing it to the point where it is more correctly termed

an executive or eliminating it entirely by having the application perform all required functions.

In such real-time systems, not only are operating system functions limited, but the information supplied to
the operating system is minimal. For example, the computational and uming requirements of a given set of
activities may be sufficiently studied so that it is possible to replace a priority scheduler, for example, with
a list scheduler or a rate-group scheduier. Neither the list scheduler nor the rate-group scheduler display
dynamic behavior — at predetermined times they dispatch predetermined acuvities. All timing and
dependency considerations have already been taken into account by the system designers. and the real-nme

system is unaware of any of this information*!,

As a result, the implementations of real-time systems traditionally distort the application’s structure. For
example, often physical processes are modeled as periodic, even if they are not. in order to simplify
scheduling and increase system predictability. Or shared data is accessed directly (without using an access
control mechanism such as a lock) because the acuvites have been designed and placed in a sufficiently
static schedule that 1t can be demonstrated that no conflicts can occur.

The phulosophy underlying DASA resides at the opposite end of the spectrum: in order to handle dvnamic
applications today and to effectively accommodate applicauon modifications tomorrow, the system always
decides which activities should be run, relying on key information supplied by the applicanon. Rather than
changing the applicaton in order to restrict the information passed to the operating system in the hope of
reducing the run-ame computation performed by the system — rendering the application difficult to adapt
along the way — the application is encouraged to provide the system with as much relevant information as

possible, thereby potentially allowing the system to make better decisions on behalf of the application.

Unfortunately. this philosophical difference implies that the same application designed and implemented
according each phulosophy will produce very different code. Once again, this imits the ability to validate
the effecuveness of DASA by simply using it to schedule exusting applicatons. [t is quite possible, for
example, that an existing application employs shared memory but, as mentioned above, never issues any
requests for access to the shared resource because an appropnately restricuve schedule makes 1t
unneccessary. It is extremely unlikely that DASA could demonstrate improved performance under such

constraints.

4!One of the most unfortunate aspects of such systems becomes evident when they must be modified — perhaps to impiement a
new function or to add an improved device. Then all of the tming and dependency analyses must be performed again. In tact
moditying -.ch systems mav Cost nearly as much as the onginal implementation.

Scheduling Dependent Real-Time Activities C-125

5.2.1.2. Modifving or Reimplementing Existing Applications

The preceding discussion empbhasizes the difficulties involved in using existing applications directly to
evaluate DASA.

Two of the problems mentioned above — DaSA requiring more information than is traditionaliy supplied
to a scheduler and implementations that hide application structure and information from the operating
system — can be addressed by modifying exisuing implementations or by reimplementng them. The new,
resulting implementauons could then be executed using several different schedulers to evaluate the refative
effectiveness of each scheduling algorithm. However, in order to justify any results gained by this
approach, the new implementations would have to be verified in some manner. Specifically, they would
have to be demonstrably equivalent to the original implementatons in all important respects. For real
applications, which are often large and complex, this vague-sounding requirement could be arbitrarily
difficult to satisfy. '

2.1.3. Modeling Existing Applications

Creating skeletal applications that represent real applications reduces the amount of work required to
produce each application, but complicates the problem of proving that an abstracted application
corresponds to the real application in all important ways since, by definition, some details of the application
will have been discarded. Justifying that the selection of which detais should be retained and which should
be eliminated or how all or part of the applicauon should be modeled is once again a vague requirement
that would have to addressed in an ad hoc m~nner for each application in all likelihood.

As with each of the preceding approaches to providing a workload to use to evaluate the DASA scheduling
algorithm, this method is only capable of providing information concering the specific workloads used.
There is no guarantee that those applications are representative of real-ume supervisory control applications

in general, and these limitations must be addressed.

5.2.1.4. Simulating the Execution of a Parameterized Application

The final potential approach to evaluate DASA, and the one actually used. employs a parametenzed
application or set of applications. The execution of these applications can then be simulated under various
scheduling algorithms and performance measured. By selecting useful parameters and varying them over
ranges of values more general results can be obtained from this workload than could be drawn from a
specific set of applications.

Furthermore, the simulator built for this evaluation can be given an arhitrary application (workload). This
allows an expenimenter to model a potential application with any desired amount of detail, simulate the
application’s execution using vanious schedulers, and decide whether the applicaton can benefit from the
use of the DaSA scheduling algonithm.

Shont of building an application model for execution on the simulator, useful information is still available

1o allow people with real-time applications to decide if DASA may be of interest to them. The simulation

C-126 Scheduling Dependent Real-Time Activities

results that follow span a significant poruon of the space of real-ime supervisory control applications,
based on the vanation of a few key metrics. If necessary. additonal simulations could be performed in the
furure to extend these results to other regions of the space or to accommodate new metrics. Given the
existence of these data, an applicaton designer or implementer can either profile an existing application or
create a thumbnail sketch of a new application to determine where the application lies in the supervisory
control space and whether any benefit may accrue if the Dasa scheduler is used.

This method — simulating the execution of parameterized applications — was chosen to investigate the
uality of the DASA scheduling algorithm because of its ability to evaluate the algorithm over a wide range
of situauons. rather than just a few specific applications. At the same tume, it is able to give generally
useful information to real-time applicatic designers and implementers for various conmditions and then
allows them to investgate their application to any desired degree of detail by means of a specific model for
their application. This model can be evaluated using the DASA scheduler, as well as a number of other
schedulers of general interest. Once again, new schedulers can be added to ennich the simulator if needed
or desired.

Thumbnail sketches of real applications that may benefit from the use of the DASA scheduler are
presented in Section 5.3.1.

3.2.2. Workload Selection

The workload used 1o gather the simulation results that follow featured one basic type of activity that was
tailored by a number of parameters. In this workload, each activity consisted of only a single phase. The
armival umes of the activities could be drawn from any of a number of probability distributions. and the key
parameters that define each distribution — such as the mean for a Poisson or an exponental distribution,
the mean and standard deviaton for a normal distribution, or the minimum and maximum for a uniform

distnbution — were specified by the expenmenter.

The time remaining until a phase’s deadline is also drawn from a specified probability distribution and
must always be in the future. Once a deadline has been selected, a fraction — drawn from a uniform
probability distribution — of the time remaining before the deadline 1s specified as the required
computation time of the phase. Once again, this is always less than or equal to the amount of ume
remaining until the deadline. Consequently. any such activity exccuting in a system with no other activities
would meet its time constraint. Therefore, any time a time constraint is not met, this is due to the

interaction of multiple concurrent activities.

Given the method of generating new activises, their deadlines, and required computation times, it is
possible 0 generate sequences of activities that may not all be completed successfully. This is clear if the
parameters specify a condition where the system is overioaded — for instance, if the average required
computation time for an activity was more than the average interamval time between activites. However,
even in situations where, on average, there is a significant amount of idle time, there may be transient

overload condition., due to the probabulistic nature of the parameter selection.

Scheduling Dependent Real-Time Activities C-127

The values that are accrued by completing an activity's sole phase by its deadline are also taken from a
selected probability distribution.

Finally. the number of shared resources is specified by the experimenter. If there are shared resources,
then each activity probabilistically determines how many of these resovurces it will require dunng the
execution of its computational phase. It then selects that number of shared resources randomly. The
resource requests are made sequentially with some amount of processing ime expended between shared
resource requests. The time that passes between each resource request is determined by selecting a fracuon
of the required computation tume for the phase that remains at the time of the previous resource request.
For each shared resource. the experimenter may specify the amount of computation time that must be spent
to retumn the resource to a consistent. usable state in the event that the phase is aborted.

Although the resources required by a phase are generated randomly, the actual resource requests are
ordered 1o avoid deadlocks since that is not a primary focus of this work. This is accomplished by
associating each resource with a unique key, where all of the keys may be ordered. Requests are then made
in increasing order of resource key value. In this way, deadlock cannot occur since it is impossible for any
phase to both hold a shared resource that is needed by another phase and to need a shared resource already
held by the same phase.

§.2.3. Examination of DASA Behavior

A series of experiments were performed to determine the effectiveness of the DASA scheduling algorithm
relauve to several other algonthms of interest.

5.23.1. Workload Parameters and Metrics

These experiments used the parameterized workioad described in the previous section. In this case,
activines armived according to a uniform probability distribution. The time between successive activity
arrivals, whuch is called the interarrival time, is between zero and a designated maximum value. This

maamum value is vaned to examine scheduler behavior under different levels of processor loading.

The deadline for each activity is also drawn from a uniform probability distribution, varying from zero to
200 ume units (TUs).

A straightforward load metric is employed for the simulations presented in this section. For these
simulations, the expected acuvity interarrival time is half of the maximum activity interarrival ume.
Similarly, the expected time remaining untl deadline is half of the maximum time remaining until deadline
— in this case, 100 TUs. The required computation time for a given activity is expected to be half of the
ume remaining unt! its deadline, or 50 TUs. The load metric, then, is simply the expected time required to
complete an activity divided by the expected time between successive activity armvals.

By selecting maximum activity interarrival times from 800 to 50 TUs, the range of processor loads that
can be examined extends from 0.125 (fairy light load) to 2.0 (twice as many cycles arc required as are
available, on average), respectively.

C-128 Scheduling Dependent Real-Time Activities

There are two reasons for referring to times in terms of TUs, rather than seconds. milliseconds, or
microseconds. First of all, different real-time applicatons have tme constraints that cover a wide range of
absolute times. Industnial supervisory control applications typically have ume constraints that are
measured 1n seconds or hundreds of milliseconds. Simulators and many military apphcauons may have
time constraints that are on the order of tens or hundreds of milliseconds. And lower-level control systems
can have even tighter ume constraints. By using TUs, this work is not arbitrarily associated with a single
class of applicadon. Rather, it seems reasonable to expect that, in the future. these scheduling algorithms
can be applied to progressively more demanding real-ume applications as processor speeds increase and
improved real-time computer architectures are devised.

TUs were also used to allow the results presented here to be reevaluated as technology does change. In
particular, the ov:rhead that is incurred by using relatively complex scheduling algonthms can be
expressed in terms that reflect the technology of the time, such as the time required to perform a
multplication or division operation or the time required to sort a list. As technology changes, the overhead
changes as well.

This can be contrasted with the real-time applicaton being scheduled. Often, the ume constraints that
must be met are dictated by the application itself — a real world physical process that is subject to the laws
of physics for example. Improved computer technology does not affect these time constraints, although it
typically affects the applicaton by reducing the amount of processor time that is required to execute any
given piece of code. So while the time constraints for a specific physical process remain fixed, the absolute
time required to execute both the application and its scheduling algonthm are reduced as technology
progresses. This will tend to increase the domain .a which complex schedulers may be used in the future.

By expressing both the time constraints and the scheduling overhead in terms of TUs, it is possible to
determine what range of time constraints are appropnate for a given scheduling algonthm. To do this, a
conversion from real time units (such as milliseconds) to TUs can be computed by noting the time required
to perform the basic operations that dominate the scheduling algorithm ir question. and therefore are most
responsible for its overhead. Using this conversion factor, the application time constraints can be expressed
in terms of TUs. Then, a simulation that directly mimics the application in question, including scheduling
overhead. can be run, or a more general set of simulations that take scheduling overhead into account can

be consulted to determine the applicability of a given scheduling algonithm.

The values associated with the phases varied uniformly from one to ten. A mirumum value of zero w s

not used since that could be interpreted as a worthless process, hence one that need not be scheduled.

A fixed number of shared resources was used for each set of simulations. The results shown in Figures
5-2 through 5-7 correspond to simulations employing zero, one, and five shared resources. Since DASA was
the only algorithm that could abort specific phases. the undo times for the shared resourc.s were defined to
be (essenbally) infinite. In that way, DASA would not schedule aborts and its bek .vior would be more
comparable to that of the other algorithms under consideraton

Scheduling Dependent Real-Time Activities C-129

Three other scheduling algorithms were chosen to compare with DASA: DL. a simple deadline scheduler,
SPRI. a static pnority scheduler: and LBESA, Locke's Best Effort Scheduling Algorithm.

These algonthms illustrate a number of points. DL and SPRI apply only urgency or only importance
informauon. respectively, while LBESA and DASA consider both tvpes of information. From another point
of view, DL represents the simplest type of deadline schedule: — it simplies dispatches acuvities 1 order
of increasing deadline. If there is an overload. rather than shedding some activities, it continues to schedule
all activiges in deadline order. LBESA provides an advanced load-shedding capability in a deadline-based
scheduler. And DASA continues to extcad this load-shedding by considering more activities for execution
than the other algorithms. Finally. SPRI must be included since it is the algonthm that is actually used by a
large number of supervisory control applications.

Shared resource management for each scheduler (except DASA) is handled quite simply: if a requested
resource is available, it is immediately allocated to the activity requesting it. Otherwise, the activity is
entered in a FIFO (first-in, first-out) queue for that particular shared resource. When a resource is freed at
the completion of a computational phase, the first activity entered in its waiting queue is removed from the
queue, given access to the shared resource, and made ready to run. The scheduler may subsequently
resume 1ts execution. (Notice that while activities are blocked waiting for a shared resource. they are not
consitdered by any scheduling algorithm other than DASA.)

For each combination of maximum activity interarrival time. number of shared resources, and scheduling
algorithm, a series of ten simulations were performed. In each simulation, 100 activites were generated

and scheduled.

The information gathered by the simulator included a few key metrics: the number of deadlines that were
met and the total value represented by all of the activities and that portion of the total value that was
actually accrued by the applicauon executing under a given scheduling algonthm. These were reduced to
percentages indicating the fraction of deadlines that were met and the fracton of the available value that
was obtained.

In addition. the simulator generated an event log that could be cxamined 1n order to analyze individual
situations and decisions made by various scheduling algorithms.

5.2.3.2. Scheduler Performance Analysis

The simulations described in the previous section were performed and the results are shown in Figures
S-2 through 5-7.

Figures 5-2 through 5-4 show the percentage of total available value that was actually obtained and the
percentage all deadlines that were actually met when there were zero, one, and five shared resources,
respectively, under a vaniety of processor loads. In these figures, the geometnc mean for cach scheduling

algonthm’s performance is plotied as a function of average processor load.

C-130 Scheduling Dependent Real-Time Activities

= - — © DASA
S 100 - e = .- = LBESA
o R\ Ny »~ - —x Static Priority
s 90t e O e + Deadline
L ® T T~ '
k-] R ~s Z
2 80 \ -~ _
£ 70} TN, e
] g o
o “ N
g 60 o .‘, ~N N -
s X~
50 F ' '.‘.‘ ~ ‘.\\ ~. -
401 "_ - ~
) x
30}
204 *
10} ...‘P ,
1 J
0.00 1.00 2.00
Load
% Value Obtained
= & — © DASA
S 100 - * - .- —x LBESA
o Q“\\ #— - —% Static Priority
$ 90 \i\o\ R RERLEY <+ QDeadline
§ B N ® <
—
e 70} RN T~e
£ N
.§ 60 - ".' N ~ ..
Q N >
50 - ° M ~ ~ .
40 o -'. jat ~ . ~ x
. \ -
3 -
30 - '..) 3
200 >
10} e _
L J
0.00 1.00 2.00
Load

% Deadlines Met

Figure 5-2: Average Scheduler Performance with No Shared Resources

Scheduling Dependent Real-Time Activines

C-131

& — © DASA

T 100 »— - —~ LBESA
§ % *ﬁi\ #»— - —x Static Priority
i - ~— x .* ~e ——eees = Deadline
E 80 N . SN S~
s 7l R AN -
0 . - S— -~
e 60 W T~
3 J N .
Q S
> 50l AN
A T~
40 K T =~. ~ -
—
30} T
. X
20} ¥
ot e
1 J
0.00 1.00 2.00
Load
% Value Obtained
S 100 ~ w— -+ =% | BESA
o o »— - —% Static Priority
s 90} \ ‘S dmeasees + Deadline
< x & G
s 8ol N e,
£ YN \Gx
2 7l X % =
§ “T <N T~
501 TNX
... x\.\.
40l :
~.
301 Traes
._‘ *
20} Y.
o e
.)
0.00 1.00 2.00
Load
% Deadlines Met

Figure 5-3: Average Scheduler Performance with One Shared Resource

C-132 Scheduling Dependent Real-Time Activities

= - — © DASA
g 100 o #— .- —x LBESA
§ %\\ %— - —% Static Priority
a 90 L NG e - Deadline
~— ~
3 6of 1 *\ S
g . ~
— . &
.‘E 701 \- :S ~ ~
O .)‘\ .‘. \. S ~
g 601 . ~ s N\ ~ - ~
-~ . N \O
o
> 50t \ 8 . ~
404 \(. % -
- B RN
~G T~
30t S ~
20} 3 T -
10} R
0 l .‘
0.00 1.00 2.00
Load
% Value Obtained
= o— — © DASA
g 100 ~ a *— -- —x LBESA
o b S »— - —% Static Pnority
s S0 \\,9 e ~ Deadiine
L X NG \&
g sor . K >
2 70fp \ " S
£ 3 ~
T el O N, S~
g 3(. " \ ~ -
Q . LN ~o
50} Y
s Noon N
-~ < N -
30t ER R C—
20 L ‘:’.. —— ‘
10 "' -----------
1 J
0.00 1.00 2.00
Load
% Deadlines Met

Figure 3-4: Average Scheduler Pertormance with Five Shared Resources

Scheduling Dependent Real-Time Activities C-133

All of the scheduling algorithms perform well under small loads. There are sufficient processing cvcles
that the exact scheduling algorithm makes Little difference. As processor load increases. all of the
algonthms become less effecuve and the differences among them become more apparent. Of course. for
loads greater than 1.0. it is impossible to complete all of the activities on obme — there are simply not
enough processor cycles to satisfy demand. Even for loads that are less than 1.0, there are usually intervals
that represent momentary overloads — that 1s, short intervals of time wherz2 it 1s not possible to ccmplete
all of the acuvities on time — due to the probabilistic nature of the workload. (Consequently. obtaining
100% of the available value or meeting 100% of the deadlines for a simulaton is often impossible.
However, it serves as an absolute upper bound on the performance of the scheduling algorithms.)

DL drops most rapidly in performance. pnmanly due to the fact that it does not shed load. This was done
intentionally to show an extreme behavior of deadline-based scheduling. LBESA and DASA represent
another extreme since they generate schedules that are deadline-ordercd and only depart from deadline-
ordered schedules when overloads are detected. As shown in Figure 5-2, even when there are sufficient
processor cycles. on average, it is still difficult 10 meet many deadlines using the DL scheduler.

DL does not degrade appreciably with different numbers of shared resources because the overload
behavior just described dominates its behavior.

SPRI degrades smoothly as load increases. As more shared resources are added. increasing the interaction

of the acuwities, its performance decreases more rapidly as a function of load.

LBESA exhibits a few noteworthy tendencies. First of all. when there are no shared resources. 1t typically
meets more deadlines than SPRI, while accruing less value. This is partiallv a consequence of 1ts time-
dnven onentation compared to the.value-driven nature of SPRI. Like SPRI, it also displays graceful
degradaton as load increases and there are no shared resources.

When there are shared resources. LBESA performs quite differendy. It typically performs much worse
than any of the other algonthms at relatively low processor loads. This results from a particularly

unfortunate interaction between the scheduler and the shared resource manager.

As was pointed out earier, the actions of the shared resource manager constitute indirect scheduling
decisions by blocking activities that had been executing and subsequently determining the order in which

they are again made ready (and become visibie to the scheduler).

The problem with LBESA and the resource manager anses when an acuvity requests a shared resource that
has previously been allocated to another activity. The requesting activity 1s then blocked and placed in the
FIFO queue for the resource. Later, the resource is allocated to the activity and the activity is added to the
ready list for the scheduler. However, if the activity nevers completes its current phase — either because
there is insufficient time to complete it by its deadline or its value density 1s too low to prevent it from
being shed during an overload — it will hold the resource indefinitely. Therefore, all subsegquent activities
that require access to the reource will fail 1o meet their deadlines. Of coursc, this scenario does not result
every ume an allocated shared resource is requested. But, it does happen occasionally even at low

processor loads.

C-134 Scheduling Dependent Real-Time Activities

DL and SPRI are not susceptible to this particular interaction because they don’t shed load. They
eventually execute every activity that ammives. Consequently, any acuvity that acquires a shared resource
will eventually complete execution of its current phase and release the resource. Only algorithms that shed
load must be concemed about the fact that activities that are shed may be holding sh: -ed resources*?.

DASA also degrades gracefully as processor load increases, managing to accrue more value and meet more
deadlines then any of the other algorithms in these simulations. Even with a load of 2.0, DASA obtains, on
average, over 55 percent of the available value — over 25 percent more value than any of the other
algorithms.

DASA is not subject to an unfortunate interaction with the shared resource manager since it manages the
resources itself. Like LosESA, it will recognize that some activities holding shared resources cannot meet
their deadlines and so will not schedule them. However, unlike LBESA, DASA will realize when another
acuvity that can still meet its deadline needs the previously allocated resource and will attempt to execute
the activity holding the resource in order to enable contunucd progress by the application. In this way,
processor cycles are not consumed o free allocated resources unless there is an immediate need for the
resources. This is in keeping with the general philosophy that the system should always perform the
activites that will be most valuable to the system at any ume — processor cycles are not expended to free

allocated resources unless there is value in doing so.

In Section 4.3.2.4, it was shown that DASA could accrue more value than LBESA in dunng overloads
because LBESA could shed some activities unnzcessanly. However, it is impossible to prove analyucally
how often the necessary overload conditons will anise for an applicaton. The simulation results presented
in Figure S-2 show that this effect is quite pronounced under overload conditions — with a 2.0 load. DASA
obtains, on average, about 35 percent more value and meets about 30 percent more deadlines than LBESA.
(Since there are no shared resources for these simulations, the interaction of LBESA and the shared resource
manager has no effect on the simulation results. Under low loads, DASA and LBESA are expected to perform
similarly, and under high loads their differences should be due to differences in load shedding.)

Figures 5-5 through 5-7 display more information conceming the simulations described earlier. Where
Figures 5-2 through 5-4 plotted the geometric mean for each scheduling algorithm under various loads with
differing numbers of shared resources, Figures 5-§ through 5-7 show the range of values obtained and
deadlines met in each of these situations. In addition, the arithmetic mean is shown as a box placed along
the range; the geometric mean 1s shown as a star; and the harmonic mean is shown as a diamond. As
always for nontnvial data sets, the arithmetic mean is greater than the geometnc mean, which is greater
than the harmonic mean, for each case. However, the means are often so close that their symbols appear
superimposed 1n the figures,

42 pEsa has been modified to execute in the Alpha Operating System. Several adaptations were necessary to use the algorthm in
Alpha "he Alpha programming model treats unsatisfied ume constraints and communication failures, among others, as exceptions.
When an exception 1s encountered, an associated handler 1s executed. This handler restores system data structures to acceptable states
and offers the application programmer the opportunity to do the same for application data structures and activity state. This offers the
opporturuty to free shared resources 1n practice after an unsaustied time constraint, even though the LHESA model does not address
shared resources.

Scheduling Dependent Real-Time Activities C-135

100

(1417 44¢t

AN AL TTVLE R N
BN

60

sol HII : : 4 :
1 R T L ++
30 f = z z L

of L0 ig i
I a$ 4

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Percent)

DL
SPRI
LBESA
DASA

Varying Load, No Resources
100

wp 1T T*T? booab
! -
.ﬂ I +

70

Deadlines Met (Percent)

ob il T]
sol. z"||; T O

: : | : A LI
40 : : : : : : +

301

T
ol z : : | : :

: : : : : ¢
0

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

DL
SPRI
LBESA
DASA

Varying Load, No Rescurces

Figure 5-5: Scheduler Pcrformance Range with No Shared Resources

C-136

Scheduling Dependent Real-11ime Activities

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

DL
SPRI
LBESA
DASA

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, One Shared Resource
IR, 4

SPRI
LBESA
DASA

Ot
Ot

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, One Shared Resource

Figure 3-6: Scheduler Performance Range with One Shared Resource

Scheduling Dependent Real-Time Activilies C-137

100

'ﬂjh*gﬂ, ,

90|
¥

80 L

70+

60

Value Obtained (Percent)

50

40 L

30+

20 : : : %

10 -

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, Five Shared Resources
100

F',?

701

Deadlines Met (Percent)

60

50 ||

40

30} E

of LTy] %
10 A
0

L BESA——————0¢
DASA —
-G+

SPRI

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, Five Shared Resources

Figure 5-7: Scheduler Performance Range with Five Shared Resources

C-138 Scheduling Dependent Real-Time Activities

Once again, at low loads with no shared resources, all of the scheduling algorithms perform well.
displaving a fairly small variation in performance over multple simulations. The introduction of shared
resources has a marked effect on LBESA's performance. even at low loads — it may perform as well as the

others or it may perform much worse (for reasons that were explained earlier in this section).

As load increases, each algonthm displays more vanability across multiple simulations. Like LBESA at
lower loads. DL's performance falls off sharply as load increases with a great deal of variability.

At higher loads, DASA’s performance is superior to the others. In fact, in several cases, the worst
performance by DAsA for a given set of simulations is superior to the best performance of any of the other
algonithms. Furthermore, looking at individual simulatons, DASA always outperforms the others at high
loads.

5.3. Interpreting Simulation Results for Specific Applications

To complete this chapter, this section looks at a few supervisory control applications for which DAsA may
be uscful. They are indicative of some types of applicatnons that might be of interest. but do not touch on

many other possibilities, such as simulators and military platform managem -

Each applicaton is outlined briefly, indicating roughly the tvpes of time constraints involved. the
processing requirements, and the number and types of shared resources. Application details are provided to
explain how supervisory control system requirements are shaped by the physical world. However, the
descniptions are necessanly brief since too many details would obscure important information conceming

application structure and requirements.

5.3.1. Some Interesting Applications

This section presents thumbnail sketches of two real-world applications that may benefit from the use of
the DASA scheduler.

These applications are discussed for two reasons. First of all, they give a flavor of some other
applications (in addition to those presented in Chapter 1). The charactenstics that make these applications
particularly amenable to the use of the DasA scheduling algorithm are noted where appropiate.

Secondly, they offer a chance to use real applications to study how the metrics used for the simulation
results can be intially esumated from a knowledge of the application. Of course, the applications are
presented bnefly here and much better staustics could be gathered more carefully by actual real-ime
system professionals who were interested in investigaung alternate scheduling algorithms.

Scheduling Dependent Real-Time Activities C-139

5.3.1.1. Telephone Switching

The telephone company typically creates a dedicated circuit to handle each telephone call. This circuit is
actually composed of a number of shorter circuits that are connected by computer-controlled switches.
These switches handle the routing of the call from the originator to the receiver.

Each time a call is imnated. a circuit must be set up to complete the call. At each routing switch along the
way. signals must be sent and acknowledged in a moderately shon period of time — often on the order of a

second.

Because there is no way to associate a prionity with a call. it is generally impossible to distinguish urgent
calls from less important calls. Therefore, a centain portion of the circuit capacity of the phone company is
often held in reserve, even during periods of peak demand. in order to service critical calls in case of an
emergency. As a result, this capacity is unavailable for general service and is wasted (in a sense) when
there are no emergency calls.

This applicaton could almost certainly benefit by using a scheduling algorithm such as DASA. For
instance, the application could be restructured so that each call had an associated prionity. As indicated
earbier, each call also has a series of time constraints that must be met in order to properly control the
switches needed to complete the call. So the simple tme-value functons used in this research can be
applied directly in this application to capture both the importance and the urgency of each call in the
system. So an activity can be assigned to handle each call.

The shared resources in the system are the circuits and switch connections. To compiete a call a number
of these shared resources must be acquired. At the completion of the call, they may be released.

In addition, no circuits must be reserved exclusively for emergency calls. Therefore, the overall capacity
for telephone calls available to telephone company subscribers can be increased. This is due to the
behavior of DASA under overload conditions.

Under normal conditons. where there are sufficient resources exist to satsfy demands in a timely
manner, all of the calls are completed and activities are scheduled essentially in order of their respective
deadlines regardless of their relative prionties. When demand exceeds the supply of shared resources (even
within a single switch), some calls cannot be completed. In that case, a call’s prionty would be considered
when making scheduling decisions so that more important calls receive shared resources at the expense of
less important calls. In fact, DASA would abort less important calls that are holding shared resources in
order 1o free circuits and switches to complete new, higher priority calls*>.

“YWhile aborung any calls is unfortunate — they represent a disruption of service o customers — these aborts will not entail
scnous damage. More ikely, an abort will result in a disgruntled caller and callee. And since humans are involved in virtually every
call. they arc capable of taking appropnate steps following an aborted call — perhaps redialing immediately, maybe waiting awhile
before redialing, or maybe just waiting for a more opportune time if the call was not at all urgent. The actual abort processing presents
the telephone company with an opportunity to make the abort 1n a fairly painless way. As the connection 1s broken, cach pasty in the
call could be informed that the call had to be aboried in favor of an urgent call. Furthermore, the effected parties could be given some
compensation for their inconvenience such as an account credit or a free call at a later date. The processing requirements for this type
of abort processing could be associated with the acquisiion of cucuits and switch connections and is accommodated by the abort
mode] for this rescarch, which allows a resource -dependent amount of processing ime 1o be reserved in case an abort occurs.

C-140 Scheduling Dependent Real-Time Acuvities

The transition from overload to normal (non-overload) processing would be as graceful as the
transformation into the overload case, where most parties are likely to be uneffected whule emergency

traffic acquires the resources it requires.

Without presenting them here, there are a wealth of staustics available to the telephone companies
describing the frequency at which calls armive throughout a day, profiling vanous days (weeckends.
weekdays, Mother's Day, and so on), the computational requirements to route a call and to make the
necessary connectons, and the numbers and types of the shared resources wn the system (circuits, swatch
connections, logs, and databases for instance). These statstics would be used to consult the simulatuon
charts presented in this chapter or others denved for this specific application.

5.3.1.2. Process Control: A Steel Mill

A steel mill provides a number of supervisory control applications that could benefit from advantageous
real-time scheduling. This section returns to the example that was originally introduced in Secuons 1.1.2
and 1.4, focusing on a computer svstem that controls a number of furnaces supplying steel with specific

compositions to a pair of continuous casters, which cast the molten steel into slabs.
First. consider the time constraints for this application.

Each caster continuously produces a slab that is cut to specified lengths to fill orders. The slab lengths
typically vary between twenty and forty feet, and each time a new slab is cut, a new slab record has to be
generated and stored.

The caster speed varies — if it moves too quickly. the metal will not have solidified sufficiently by the
time it emerges from the caster; if it moves too slowly. productivity will be unnecessarily low. The caster
is operated at the maximum speed at which solid steel can be produced. This speed is determined by the
temperature and chemistry of the steel being cast, the water temperature and spray rates of cooling nozzles
located along the length of the caster, and several other factors. Typically, a new foot of steel emerges

from the caster every six to twelve seconds.

Each ume a new foot of steel is cast, a record must be created to document the chemistry of the foot and
other informaton that is used to track the metal through the mill. If this information is lost or s not
recorded on time, the chemistry of the slab cannot be adequately certified for customers with stnct product
quality requirements, and the slab cannot be sold to them. The processing that occurs as each foot of steel

is cast is quite complex and requires a second or two of processing time.

The fumace has fewer tight ime constraints than the caster. The tumaces produce steel in units called
“heats.” A heat typically requires between thurty and forty-five minutes to produce. During that ume, the
chemistry of the steel is calculated several times by a complex analytical model. The chemistry 1s also
measured direcly by a chemistry laboratory. Even after the heat is produced the steel’s composition may
be adjusted at a liqud metallurgy facility. Near the conclusion of a heat, oxvgen is blown through the
molten metal to reduce the carbon content of the steel. It is important to produce steel with a fairly precise

Scheduling Dependent Real-Time Activities C-141

carbon content because of the extent to which carbon content affects the physical properues of steel. The
oxvgen is blown through the steel under the direction of the supervisory contrel computer. and it must be
shut off at a precise time after it has started. This ime is determined by the supervisory control computer
based on the analytic model and the measured chemical compostion of the steel. Missing this deadhine can
be costly.

Next, consider the shared resources in this example.

Each heat is tracked as it makes its way through the mill from the furnace to the caster and beyond. The
primary database for this tracking is called the heat log. An entry in the heat log 1s ininally made as the
fumace begihs a heat. The record may be modified by the liquid metallurgy facihty or a holding staton or
even one of the casters. Informatgon amves for the heat log asvnchronously. There is typically. for
example. no guaranteed response time for the chemistry laboratory to return an analvsis: heats are not
produced penodically, although they are produced regularly. and the order in which heats are cast can
change on very short notice.

There are a number of other databases in thus example. All are shared among muluple activities.
Usually, most of these activities are cooperating to produce steel. while others perform maintenance tasks.,
such as calculaung the lifetime of fummace linings and cutting torches or monitoning the inventory of scrap
metal and cntcal ingredients. All of these activities require access to the databases '

Often activities cooperate to carry out the various application tasks. These tasks. perhaps fifty or sixty in
number, make extensive use of signals to communicate with one another. Typically, a number of activities
cannot proceed untl one or more other acuvities have properly gathered and prepared the necessary data or
until some external event has occurred. Signals are an efficient communcation mechanism in such

systems.

Devices are also shared in this applicaton. The communication channels to the lower-level process
control computers, to the higher-level production control computers. and to human operators that oversee
producton are of particular interest.

Notice that this application fits the model outlined in this thesis. The mill exists to make steel, which has
a very definite value. It is possible to place corresponding values on the steps taken to produce the steel.

making the use of ime-value functions feasible for this application

Funthermore, it is a supervisorv control application with deadlines that are on the order of seconds. All of
the component physical processes proceed asynchronously, and the processor utibization is sufficiently high

that some transient overloads will occur.

Of course, failures in the system or alarm conditions from the lower-l2vel process control computers can
also add unanticipated load to the supervisory control system for a generally unspecified length of ume. In
addition, quenies and commands from human operators also contnbute to the processing load. They amve
asynchronously and typically must be serviced within a matter of seconds Overloads are not ynusual 1n

these systems.

Scheduling Dependent Real-Time Activities C-143

Chapter 6
Related Work and Current Practice

There has been a great deal of research done on scheduling, in general. and scheduling for real-ume
svstems. in particular, through the years. This chapter will attempt to put thus thesis work in 1ts proper
place within this overall context.

A wide variety of scheduling algorithms have been devised and analyzed through the years for computers.
Most of the basic scheduling algorithms are covered in text books on scheduling [Baker 74, French 82] or
on operating systems [Janson 8S, Peterson 85]. Each algonthm possesses certain properties that
differennate it from others. For instance, round-robin is fair, while shortest processing time first maximizes
throughput. However. many of these properties have no value in real-ume systems. Nonetheless, these
texts do contain scheduling algorithms that are useful in real-time systems.

Real-ume scheduling algonithms can be categonzed in a number of ways. For now, the algonithms will
be divided into two groups: those that are prionty-based and those that are deadline-based.

6.1. Priority-Based Scheduling

Most of the real-time systems currently in service employ a static pnonty scheduler of one type or
another. In these systems, component activities are assigned stauc prionties, and the systems are tuned so
that they will typically meet their time constraints. There is also a large body of literature that has
invesugated priority-based scheduling algonthms beyond this current practice. In {Liu 73], a method for
static pnonty assignment was presented for penodic real-ime activites. The scheduling discipline that has
grown from thus work is called rare monotonic scheduling. This basic approach has been elaborated and
expanded upon since (e.g.. [Sha 86]), but the applications for which it is intended are always those where
most, if not all, of the activities are periodic, and where the periodic activities are always the most
important activities in the system. While there are systems that fit this discnption. the family of
supervisory control systems that are of interest in this thesis do not. Also, none of the rate monotonic
scheduling algorithms deal directly with the problem of scheduling a set of dependent activities.

A second class of priority-based scheduling algorithms has dealt explicitly with some of the scheduling
difficuloes that anse as a result of the dynamic interaction of activities. Some operating systems (e.g.,
VMS [KB 84)]) implement prionity adjustment schemes to refine the simple static pnority model, and other
schemes have been proposed 1n the literature as well ({Sha 87]). All of these schemes address problems in

C-144 Scheduling Dependent Real-Time Activities

which a lower priority activity that shares a resource with a higher prnonty acuvity can block the higher
priority activity for an arbitranily long ume. The solution, roughly speaking. allows the lower prionty
activity to assume a higher pnority for at least long enough to complete its access to the shared resource,
thereby allowing the higher prionity activity to resume. This approach does solve some problems that are
associated with simple prionty-based scheduling algomthms, but it does not come to gnps with the
fundamental shortcoming of ali of the prionty-based schemes: prionties are unable to adequately capture
the cntical scheduling information for activities. Specifically, an individual activity's impontance to the
overall application and its’ urgency are two independent factors: an acuvity is not urgent just because 1t is
very imponant, and it is not important just because it is urgent. This distincuon is lost in static prionty
scheduling schemes where both importance and urgency must be reflected in a single quantity, the
activity 's prionty.

6.2. Deadline-Based Scheduling

The second group of real-time scheduling algorithms to be dealt with are the deadline-based algonthms™.
These algonthms seem well-sutted for real-time systems since they explicitly take into account an acavity's
ume constraints, and they do not typically require that all activities be periodic. Deadline schedulers have
been in use in operating systems at least since the 1960s, and [Liu 73] demonstrated the opumality of
deadline scheduling under one computational model. Unfortunately, the basic deadline scheduling
algonthm becomes unstable whenever an overioad occurs; 1t acts to minimize the maximum job lateness
and maxamum job tardiness({Conway 67]). This may be the desired action, but often it i1s not.
Consequently, a great deal of work has been done to modify the behavior of deadline scheduling in
overload situations. Some work that does not consider dependency requirements includes: {Mantel 82,
which presents an algorithm that will complete all of the (independent) activities while mimmizing the
maximum lateness of any individual activity; [Moore 68], which uses a scheme that also completes all of
the independent activites while minimizing the maximum deferral cost associated with any acuivity; and
[Locke 86], which does not necessarily execute all of the activities. but does attempt to maximize the value
acquired by completing those that are executed. In each case, these schemes do not consider dependencies,

but do address the issue of overload handling, which is one of the main interests of this thesis.

Historically, there has been a great deal of emphasis placed on being able to guarantee that deadlines can
be met. In simple systems that have been built, this has been possible, or has, at least, appeared to be
possible. As systems have grown, this has become increasingly more difficult to do. In large. dvnamic
systems, it is rapidly becoming impossible. Nonetheless, guaranteeing that deadlines can be met is often
considered a pnme requirement for so called hard real-time systems, and much »ork has been done wn this
area. (In a hard real-time system, missing even a single deadline means that the entire system has failed.)
For simple systems where all of the activiues need to be scheduled periodically and have fixed execution
time requirements, Liu 73] and others allow an off-line analysis to guarantee the schedulability of a set of

acuviues under centain assumptions. In more dynamic cases where less emphasis is placed on penodic

“1In some of the management and operations research literature, deadlines are referred to as due dates.

Scheduling Dependent Real-Time Activities C-145

activites, work similar to ([Ramamrtham B4] attempts to provide the same tyvpe of guaraniee. However, it
is not obvious that attempting to offer true guarantees is wise in a dvnamic system because hononng a
guarantee may result in an inability to schedule a new activity that is clearly more imponant and more
urgent than the previously guaranteed activity. In addition. the guarantees that are offered are not absolute.
Receiving a guarantee indicates that adequate resources have been reserved to complete an acavity by the
desired ume. If resources are subsequently lost — due to a processor or a power failure, for example —
the guarantees made cannot always be met.

There is also a body of literature that explicitly deals with dependencies in deadline-based scheduling
algorithms. It should be noted that what is termed a dependency consideration n this thesis encompasses
both the notion of a precedence constraint (e.g.. acuvity A, must complete before either acuvity A, may
begin) and the nouon of a resource requirement (e.g.. activity A, requires exclusive use of resource R for
time T during its execution). In the literature, these two types of dependencies are often treated separately.
(Blazewicz 77), for instance, deals only with precedence constraints and provides an algonithm that will
allow activities with different arrival tmes and known, fixed precedence constraints to be scheduled in a
hard real-time system. This algorithm can be thought of as a deadline inhentance algonthm, whereby an
activity is scheduled as if it had a deadline "close” to that possessed by another activity that both depends

on it and has a nearer deadline.’

Unfortunately, these precedence constraints are fixed. making a
straightforward extension to handle resource rcquirements difficult. Also. no effort is made to handle

overload cases, since, by Blazewicz's definition, a missed dcadline means that the entire svsiem has failed.

[Cheng 86] looks only at precedence constraints. while {Zhao 87] looks at both precedence constraints
and resource requirements. In both cases. these represent extensions of {Ramamritham 84) and share the
same shortcomings — they attempt 1o make guarantees to run specific activiues at the possible expense of
more urgent or more important acuvities that may amve later, and the guarantees are not truly guarantees
since unanticipated problems can prevent their fulfillment. In addition. although [Zhao 87] presents a more
dynamic, less restricuve model than that presented in most of the work 1n this area, knowledge of the

specific resource requirements of any activity to be run is sull assumed to be known 1n advance.

{Lawler 73] deals with precedence constraints when scheduhing a group of activities on a single macthune
and presents an algorithm that uses a monotone cost function 1o denve a schedule that mimimizes the
maximum of the incurred costs. However, the activities to be scheduled have no deadlines. nor do they
have any resource requirements. [Elsayed 82} presents heunstcs to schedule a set of actvities that share

resources to complete a project. Once again, there are no deadlines associated with any of the activiues.

Some of the previous references deal with uruprocessor scheduling. and some deal with mu'tiprocessor or

multiple processor scheduling. This disuncton was not made previously because the number of

“In fact one view of the DASA algonthm to be cxamined in the thesis work 1s exactly this [t incorporates the idea that the
activities on which some activity depends must be dealt with before the activity's deadline, as must the achivity nself However, in
addition, the algonthm assesses the situation to decide if there 1s currently an overload, and if so. selects the subset ot activities 1o be
run according to a meaningful metnc.

C-146 Scheduling Dependent Real-Time Activities

processors. although centainly an important consideration*®, is of secondary concem for the work at hand.
The pnmary issues being addressed when comparing and contrasting those efforts with thus one are:
whether or not time constraints are dealt with expuicitly, the amount and type of information on which
scheduling decisions are based. and the fundamental nature of applicatons (whether they are static or
dvnamic, periadic or aperiodic; whether overloads can occur and if so how they are handled). And,
although a great deal of work has touched on vanous aspects of the thesis problem. none of thus work has
addressed all of the key issues at once.

6.3. Other Related Work

The computational model presented in this thesis provides for the aborton of an activity. This is done for
two reasons. First of all. in any applicauon, if an activity that manipulates shared resources is to be
‘terminated, unless specific steps are taken there is a danger that the shared resources will either be
unavailable for use by other activities or left in an inconsistent state. The abort mechanism addresses this
problem by allowing the shared resources to be retumed to an acceptable state for later use. Secondly, an
abort mechanism similar to that just menuoned can be used to support an atomic transaction
factlity {Eswaran 76). The ability to include such a powerful facility in real-time systems is inviung*’, and
the work presented here can assist in making this feasible at some point. Some work has already been done
along those lines. Often, this has involved changing the concurrency control features found n tradiuonal
database transaction managers ([Liskov 83, McKendry 85, Sha 85]). Other work has examined the
problem of scheduling transactions using the standard concurrency control rules. However. the models
chosen for work in this area ([Liu 88], for example) usually requre detailed prior knowledge of the precise
resource requirements and exact access and release umings for each resource in each transaction. This
thesis addresses a more dynamic mode! than that.

Finally, a few other research directions should be mentioned to put this work in its proper context. An
underlying assumption of this work is that dependencies among component activities are a natural product
of complex, dynamic real-ume systems. There is some work that attempts 10 approach the construction of
applications from other points of view. [Herlihy 88) explores an approach that would eliminate the need for
any activity to wait on other activities when accessing resources. However, this approach does not allow
the maintenance of mutually consistent resources, which is often important in real-time systems. [Buman
%8, Joseph 88) outine poruons of a scheme that allows application-specific consistency constraints to be
sausfied by uulizing a set of communication and replication mechanisms. How to specify the behavior of
objects that have been composed in this way so that large applications can be constructed using a modular

design methodology is an important open question with respect to this approach.

“"Note, for instance, that a scheduling algorithm that 1s optimal for a uniprocessor may not be opumal for a multiprocessor. A
simple deadiine scheduler with no overloads demonstrates this fact.

“"In fact, [Jensen 76] suggests using transactions not only for real-time appiications, but also within a decentralized operating
system that supports these applications.

Scheduling Dependent Real-Time Activities C-147

[Bach 86]

[Baker 74]

[Bennett 88}

(Buman 88]

[Blazewicz 77]

[Cheng 86]

[Conway 67]

[Elsaved 82]

{Eswaran 76}

{French 82]

(GD 80}

{Herlihy 88]

Bach. M. J.
The Design of the UNIX Operating System.
Prenuce-Hall. Inc.. 1986.

Baker, K. R.
Introduction 10 Sequencing and Scheduling.
John Wiley & Sons, 1974.

Bennett. S.

Prentice Hall International Series in Systems and Control Engineering: Real-Time
Computer Contrel: An Introduction.

Prentice Hall, 1988.

Birman, K. P. and Joseph, T. A.

Exploiting Replication.

Technical Report TR 88-917. Comell University, Department of Computer Science,
Ithaca. NY, June, 1988. ,

This is a preprint of matenial that will appear in the collected lecture notes from "Arctic
88, An Advanced Course on Operating Systems ', Tromso, Norway, July 5-14, 1988,
The lecture notes will appear in book form later this year.

Blazewicz, J.

Scheduling Dependent Tasks with Different Ammval Times to Meet Deadlines.

Modelling and Performance Evaluation of Computer Sysiems.

North-Holland Publishing Company, 1977.

Proceedings of the Intemational Workshop organized by the Commission of the
European Communities, Joint Research Centre, Ispra Establishment. Depantment A,
Ispra (Varese), ltaly, October 4-6. 1976.

Cheng, S., Stankovic, J. A. and Ramamntham, K.

Dynamic Scheduling of Groups of Tasks with Precedence Constraints in Distrnibuted
Hard Real-Time Systems.

In Proceedings of the Real-Time Systems Symposium, pages 166-174. December, 1986.

Conway. R. W, Maxwell, W. L. and Miller, L. W.
Theory of Scheduling.
Addison-Wesley Publishing Company, 1967.

Elsayed. E. A.
Algonthms for Project Scheduling with Resource Constraints. :
International Journal of Production Research 20(1):95-103, Januarv/February. 1982.

Eswaran, K. P.. Gray, J. N, Lorie, R. A. and Traiger. I. L.
The Nouons of Consistency and Predicate Locks in a Database System,
Communications of the ACM 19(11):624-633, November. 1976.

French, S.
Sequencing and Scheduling - An Introduction to the Mathematics of the Job-Shop.
John Wiley & Sons, 1982.

General Dyvnamics.

Computer Program Product Specification for the System Function Processor
Operational Flight Program for the F-16 Multinational Staged Improvement
Program, Block 30.

Technical Report CPCI 7175-1A00, General Dynamics Corporation, December, 1980.

Herlihy, M. P.

Impossibility and Universaliry Results for Wait-Free Synchronization.

Technical Report CMU-CS-88-140, Camegie Mellon University, Computer Science
Department, Pittsburgh, PA, May, 1988.

C-148 Scheduling Dependent Real-Time Activities

{Janson 85] Janson, P. A.

Operating Svstems: Structures and Mechanisms.
Academic Press, 1985.

(Jensen 75] Jensen, E. D.
Time-Value Functions for BMD Radar Scheduling.
Technucal Report. Honevwell Systems and Research Center. June, 1975.

[Jensen 76) Jensen, E. D.
Decentralized Operating Systems.
In Workshop on Distributed Processing. Brown University, August, 1976.

[Joseph 88) Joseph, T. A. and Bimman. K. P.
Reliable Broadcast Protocols.
Technical Report TR 88-918, Comell University, Department of Computer Science.
Ithaca, NY, June, 1988.
This is a preprint of raaterial that will appear in the collected lecture notes from "Arctic
88, An Advanced Course on Operaung Systems’, Tromso. Norway, July 5-14, 1988.
The lecture notes will appear in book form later this vear.

[KB 841 Kenah, L. J. and Bate, S. F.
VAX/VMS Internals and Data Structures.
Digital Press, 1984.

[Lawler 73] Lawler, E. L.
Optimal Sequencing of a Single Machine Subject to Precedence Constraints.
Management Science 19(5):544-546. January, 1973.

[Liskov 33] ° Liskov, B. and Scheifler, R.
Guardians and Actions: Linguistic Support for Robust. Distributed Programs.
ACM Transactions on Programming Languages and Svstems 5(3):381-404, July, 1983,

[Liu 73] Liu. C. L. and Layland, J. W.
Scheduling Algonthms for Multiprogramming in a Hard-Real-Time Eavironment.
Journal of the Association for Computing Machinery 20(1):46-61, January, 1973.

[Liu 88] Liu, J. W.S., Lin, K. J. and Song, X.
Scheduling Hard Real-Time Transactions.
The Fifth Workshop on Real-Time Software and Operating Svstems :112-116, May,
1988.

[Locke 86] Locke, C. D.
Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Camegie Mellon University, May, 1986.

(Mach 86} Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevaman, A, and Young,
M.
Mach: A New Kemel Foundation for UNIX Development.
In Proceedings of Summer Usenix. July, 1986.

[MacLaren 80) MacLaren, L.
Evolving Toward Ada in Real-Time Systems.
ACM SIGPLAN Notices 15(11):146-155, November, 1980.
Thus issue was also the Proceedings of the ACM-SIGPLAN Symposium on the Ada
Programming Language, Boston, MA; December 9-11, 1980.

(Martel 82} Martel, C.
Preemptive Scheduling with Release Times, Deadlines. and Due Dates.
Journal of the Association for Computing Machinery 29(3):812-829, July. 19%2.

{McKendry 85] McKendry. M. S.
Ordenng Actions for Visibdlity.
Transactions on Software Engineering (IEEE; 11(6).509-519. June. {985,

Scheduling Dependent Real-Time Activities C-149

[Moore 68] Moore, J. M.
An n Job. One Machine Sequencing Algonthm for Minimizing the Number of Late Jobs.
Managemen Science 15(1):102-109, September. 1968.

[Northcutt 87) Northcutt, J. D.
Perspectives in Computing. Volume 16: Mechanisms for Reliable Distributed Real-
Time Operating Systems: The Aipha Kernel.
Academic Press, 1987.

[Peterson 85] Peterson, J. L. ang Silberschatz, A.
Operating Svstem Concepts, Second Edition.
Addison-Wesley Publishing Company. 1985.

[Ramamritham 84]
Ramamntham. K. and Stankovic. J. A.
Dynamic Task Scheduling in Hard Real-Time Distributed Svstems.
IEEE Software 1(3):65-75, July, 1984.

[Rauch-Hindin 87]
Rauch-Hindin, W. B.
UNIX Overcomes Its Real-Time Limitations.
UNIX World 4(11).64-78. November, 1987.

[Ritchie 74)] Ritchie, D. M. and Thompson, K.
The UNIX Time-Shanng Svstem.
Communications of the ACM 17(7):365-375, July, 1974,

(Sha 85] Sha L.
Modular Concurrency Control and Failure Recovery --- Consistency, Correctness and
Optimaliry.
PhD thesis, Camegie Mellon University, 1985,
{Sha 86) Sha. L., Lehoczky, J. P. and Rajkumar, R.

Solutions for Some Practical Problems in Prioritized Preemptive Scheduling.
In Proceedings of the Real-Time Systems Symposium, pages 181-191. December. 1986.

{Sha 87] Sha, L., Rajkumar, R. and Lehoczky. J. P.
Prioriry Inheritance Protocols: An Approach to Real-Time Svnchrom:zation.
Technical Report CMU-CS-87-181. Camegie Mellon University, Computer Science
Department, Pittsburgh. PA, December, 1987.

[Stadick 83] Stadick, E. M.
A Reai-Time Control System Implementation Study Using the Ada Programming
Language.
Technical Repont NSWC TR-83-213, Naval Surface Weapons Center, 1983,

[Ullman 75) Ullman, J. D.
NP-Complete Scheduling Probiems.
Journal of Computer and System Sciences 10(3):384-393, June, 1973,

(Zhao 87] Zhao, W., Ramamritham, K., and Stankovic, J. A.
Scheduling Tasks with Resource Requirements in Hard Real-Time Systems.
IEEE Transactions on Software Engineering SE-13(5):564-577, May, 1987.

Scheduling Dependent Real-Time Activities C-151

Appendix A

The General Scheduling Automaton Framework

In order to provide a formal framework in which to discuss scheduling policies for real-time acuvities. the
following model has been adopted.

Notation The following conventions, modeled after the style used by Maurice Herlihy, are employed in
defining the computational model and the automaron that will examine schedules:
e Identifiers wntten in all capital letiers dcnote domains of values (e.g., TIMESTAMP)

¢ The automaton that evaluates schedules hias certain state components associated with it; these
are designated by identfiers that begin with a single capital letter followed immediately by one
or more lower-case letters (e.g.. Total, AbortClock)

¢ Operations are accepted by the automaton if they meet certain preconditions

¢ Following operation execution, certain postconditions hold; when these result in modifying the
value of a state component, the new value is followed by an apostrophe (e.g.. Clock’ = Clock +
1)

The Model

1. An application is composed of a set of activites, each of which compnses a sequence of
computational phases. At any given ume, these activites can be referred to by means of the
phase that they are currently carrying out. Therefore the set of activities can be represented
by the set of phases currently defined: {py. p;, ps. ... }

2. While executing an application, an observer located within the operating system could
monitor a sequence of me-stamped events passing to and from the scheduler. These events
are of the form:

levent op{parms) o
where,
t is a timestamp,
op is the operation associated with the event (as defined below).
parms are the arguments for the operation,
0 1s the oniginator of the event (either p, for a phase. or S,
for the scheduler)

A sequence of these events is called a history. Notice that some of these events are generated
by individual phases and some are generated by the scheduler.

C-152

Scheduling Dependent Real-Time Activities

3. make a real table] The operations that may occur in events, and the potential onginators of

cach. include:
Event Potenual Onginatorts)
e requesi-phase(v, Lepecied’ Phase
e abort-phase(p) Scheduler or Phase
e preempt-phase(p) Scheduler
® resume-phase(p) Scheduler
® request(r) Phase
sgranip.r.t .) Scheduler

4. The individual computational phases that compnse an acuwvity are delimued by
‘request-phase’ events. A ‘request-phase’ event ends one computational phasz of an acuvity
and begins the next atomically.

S. Phases may access shared resources. A request for such access ts s.gnalled by a phase by
means of a "request’ evert for the specific resource desired. Permission to access a shared
resource s signalled to the phase by means of a "grant’ event.

6. All shared resources that are held by an activity must be released at the compleuon or
abortion of each computational phase.

7. At any given ume there is one phase that is active. [t may be preempted by the scheduler.
Thus 1s signalled by a ‘preempt-phase’ event. The scheduler may subsequently determine that
the phase shouid be resumed. this s signalled by a “resume-phase’ event.

8. A history 1s defined as a sequence of events. Not all histones are meaningful or well-formed.
Letey e, e, ... denote events. Then, formally, a history, H, can be denoted as:

H=ey e e, ... €,

where the operator " denotes concatenation.

Informally, a projection of a history selects cerain events from a history. preserving their
relative postions in the projection. Therefore, a projection of a history could include all of the
‘request-phase’s from the history or all of the events that dealt with a specfic phase. The
symbol "|" denotes a projection. So for example, /f | p represents the projection of history #H
onto phase p. Thus projection would include all of the cvents that were onginated by phase p
or that were onginated by the scheduler and included p as an operational parameter.

9. Some additional terminoiogy and notation will be useful for discussing events. Let an event,

e represent the following event:
€=1lyiens op(parms) O
Then define the following simple functions:

umestampie) =t, ..

eveniypele) = op

source(e) =0

Scheduling Dependent Real-Time Activities C-153

10. The conditions that define a well-formed history include*®:

e event timestamps must increase monotonically and must be unique — test examine the
timestamps on events. for example, apply the function timestampsOK() 1o a histon H to
verify that it meets this requirement, where timestampsOK() 1s defined as:

timestampsOK(0) = imestampsOK(e) = true

Il'meslampSOK(el~e2-i{) =

Jalse. if timestamp(e)
2timestample,)
timestampsOK(H), otherwise

e request for a resource must appear in the schedule before the corresponding grant —
test: for each 'gramt’ event, search the history of the phase in which the 'grans’
occurred for a preceding ‘request’ for the same resource

* a phase cannot be preempted if it is not active; it cannot be resumed if it is active: and
so on — simple tests check all of these conditions

¢ a given phase either commits or aborts; the events assure that a singel phase cannot do
both; however, a well-formed history must have at most one ‘abort-phase’ event for
any given phase — test. examine the history for the occurance of two or more 'abort-
phase’ events for a single activiry that are not separated by a 'request-phase’ event.

e expected compute ume is accurate — test. check that the estimated computation time
equals the actual computational time used, for example, the following test could be
applied:

crtest(H) =
(Vp)comptimeOK(H | p) v phaseaboried(H | p) v phaseunfinished H | p})

where,

“It s not always clear that a specific test be a requirement of a well-formed history or whether 1t 1s a requirement that determines
which histones will be accepted by a given automaton. There 1s no question that the proper temporal ordenng of events 1s &
requirement for a well-formed history; however, tests that constrain the relative ordenng of specific events — for instance, ‘request’
and "graat’ events — 1n a history are not so obviously requirements for a well-formed history. As a result, this hist 1s merely an
auempt to lay down an initial set of tests. Some of these tests need not be done prior to submutting the history to an automaton — tn
those cases, the automaton will enforce the requirements venfied by the tests in question.

C-154 Scheduling Dependent Real-Time Activities

comptimeOK(p.0) = comptimeOK(p.e) = 0

comptimeOK(p.e -e~H) =
ta~t+comptimeOK(H), - if(e|=t| resume~phase(p) §
Ve =t grani(p) S)
Aes=t, preempt-phase(p) §
Vey=t, request(r) p)
ta=t, if (e\=t, resume—phase(p) §
ve =t grant(p) §)
Ales=tyrequest—phase(v.t) p
Ve =ty abort-phase(p) O)

phaseaborted(p,0) = false

phaseaborted(p.e-H) =

true, if e=t abort—phase(p) O
false, if e=t| request—phase(v.ty) p
phaseaborted(p), otherwise
phaseunfinished(p.0) = true
phaseunfinished(p.e H) =
false. if e=t abort—phase(p) O
v e=t, requesi-phase(v.l.)p
phaseunfinished(p H), otherwise

e expected abort ime is accurate — test: simular to the previous test

¢ estimated computaton time required for a phase must always be greater than or equal

to zero?® — test: strasghtforward inspection of each 'request-phase’ event in the
history
eno ’'request’ event should request shared access to the nullresource — lest:

straightforward inspection of each 'request’ event in the history

11. The state compenents associated with the scheduling automaton framework are:
¢ ExecMode: PHASE — MODE (MODE is either ‘'normal’ or ‘abort’)

¢ ExecClock: PHASE — VIRTUAL-TIME

e AbortClock: PHASE —» VIRTUAL-TIME

¢ ResumeTime: PHASE — TIMESTAMP

¢ Value: PHASE — (TIMESTAMP —» VALUE)

e Total: VALUE (inunally "0")

¢ RunningPhase: PHASE (irutially "nullphase’)

¢ PhaseElect: PHASE (initially "<normal, nullphase>")
e PhaseList: list of PHASE (iniually "6")

e Other state components are also associated with the automaton. These are used (o

**An addiional requirement may also be piaced on the parameters of a ‘request-phase’ event: the value function must be of the
appropriate form, as outhned below. This requirement has not been included in this hist because the tests that are present all apply to
the general case of scheduling with dependency considerations in a real-ume environment using information available from arbitrary
ume-value functions. This requirement is reiated to a simpiification made 1o make the work mare clear and more manageable, and so
does not seem to carry the same weight as the others listed above.

Scheduling Dependent Real-Time Activities

handle some of the bookkeeping details for the specific scheduler being used. The
components that appear above are intended to reflect the state that any specific
scheduler would need and maintain under this general model.

Specific iniual values may be given to many of these statc components in order to satisfy the
requirements of a given automaton.

12. Operations recognized by the automaton and their general minimayskeletal preconditions and
postcondiuons:

® !, ..n: F€quest-phase(v, !

preconditions:
true <No preconditions here so that interrupts and other new phases
can occur at any time>
postconditons:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total” = Total + Value(p)(1

¢xp¢cltd) p-

cvcnl)

else
:no value for aborted phase
:release the resources acquired during the phase

:accept values for scheduling parameters
Value'(p) =v

ExecClock'(p) = tcxmmd
AbortClock’(p) =0

ExecMode '(p) = normal

:note that p is not resource-waiting

;make sure p is part of the list of phases, if necessary
if (texpeciea > 0) then
PhaseList’ = PhaseList v {p]}
else
PhaseList’ = PhaseList - {p}
o abort-phase(p) O:

event

preconditions:

<Specific to the scheduler under consideration>

postconditions:
ExecMode'(p) = abort
ResumeTime'(p) = tevent

® ! ens PTEEMDI-phase(p) S:
preconditions:

<Specific to the scheduler under consideration>

postconditions:
if (ExecMode(p) = normal) then

ExecClock’(p) = ExecClock(p) - (1 - ResumeTime(p))

event
else

AbontClock'(p) = AbortClock(p) - (t - ResumeTime(p))

event

ot resume-phase(p) §:

event

preconditions:
<Specific to the scheduler under consideration>
postconditions:

ResumeTime’(p) =t

event

® !l ens TEQUESHT) D

preconditions:

C-155

C-156 Scheduling Dependent Real-Time Activities

<Specific to the scheduler under consideration>

postconditions:

ExecClock'(p) = ExecClock(p) - (t - ResumeTime(p))

event

8 l, .n &rant(p, r. undotime(r)) §:

preconditions:

<Specific to the scheduler under consideration>

postconditions:
ResumeTime'(p) =t, ...

AbonClock '(p) = AbortClock(p) + undotime(r)*°

Specific/Simplifving Assumptions/Restrictions Time-value functions are all of the form:
v(t) = (step(val. t))t),

where,
t. is the critical time, or deadline, for this phase of an activity,
val is the value associated with completing a phase at any time before its deadline,

step(val, 1_)(t) = val, t<t,
0. 1>t

OThe function "undotime()’ indicates the amount of time that will be required 1o restore the resource just acquired to its current
state. This function may vary from system to system and from apphicaton to application. Consequently, tor the purposes of this
work. it’s place and role have been indicated without applying a single definttion for this function.

Scheduling Dependent Real-Time Activities

Appendix B

Derivation of DASA/ND Scheduling Automaton

General/Introduction. When there are no dependency considerations — as when comparing the

algonithm to LBEA — some simplificatons can be made to the formulae that define DASA.
simplificatons aid in aliowing direct comparisons to be made between algonthms. The foll
derivation points out and justifies these simplifications.

In each simplification that follows, the original formula to be simplified is taken directly fro
descnpuon of the DASA Algonthm. The derivauon of the simplification is then offered.

The Functional Definition of SelectPhase().
1. By definition, the fact that there are no dependencies means that there is no interaction or
cooperation among phases through shared resources. (Otherwise, there would be a risk of a
dependency ansing.) In the model presented here. this situation is represented by:

(Vp)ResourceRequested(p)=nullresource

2. Simplification (1) allows the definition of Dep() to be transformed from

Dep(p) = nullphase, ifResourceRequested(p)
=nullresource,
Owner(ResourceRequested(p)), otherwise

to
Dep(p) = nullphase

3. Simplification (2) leads directly to the transformaton of the definition of the function
dependencylist() from

dependencylist(p) =
o, if Dep(p)=nullphase
dependencylist(Dep(p)yv{ <normal Dep(p)>},
if AbortClock(Dep(p))
2 ExecClock(Dep(p))
{<abort.Dep(p)>], otherwise

to
dependencylisi(p) = &
4. Simplification (2) also leads to the transformation of the function PVD() from

PVD(p)= O, if ExecMode(p)=abort,
Val(p)+PV(Dep(p))

ExecClock(py+PT(Dep(p))’ otherwise

to

C-157

DASA
These

owing

m the

C-158 Scheduling Dependent Real-Time Activities

PVD(pY= 0, if ExecMode(p)=abort,
Valip) otherwise
ExecClockip)
since
PVip)= 0, if p=nullphase,
0 if AbortClock(p)
< ExecClock(p),
Val(py+PV(Dep(p)), otherwise
PT(p) = 0. if p=nuliphase,
AbortClock(p), f AbortClock(p)
< ExecClock(p).
ExecClock(p)+PT(Dep(p)). otherwise
S. Applving Simplification (3) transforms
tobescheduled(P) =
0, ifP=0
{ <normal p>}dependencylist(p)tobescheduled(P—-{p}),
ifpe P
to
tobescheduled(P) =
o if P=0

{<normal p>}_tobescheduled(P-(p}), ifpe P

which is further simplified (by means of an-inductive proof on the number of elements in P)

to
tobescheduled(P) =
Q. ifP=6
{<normalp>|pe P}, otherwise
and finaily to

tobescheduled(P) = {<normalp>|p€ P}

6. Consider the definition of mustcompleteby():
mustcompleteby(1.P) =

0, s,
{p|{<normal.p>¢€ 1obescheduled(P)ADeadline(p) <t]},
otherwise

Substituting the definition of tobescheduled() that was denved in Simplification (5) yields

mustcompletebyv(t,P) =

0. if{qr\rnl
{p \l<normal p>¢ {<normal.q>| q€ P}ADeadline(p) <t]}.
otherwise

which is equivalent to . ..

mustcompletebv(i,P) =
0. ifi<e, .,
{plpe PADeadline(p)<t}, otherwise

7. Again, applying Simplificaton (3) allows

Scheduling Dependent Real-Time Activities C-159

mustfinishbv(1.P) =
o. ifP=ovi<t

even!
v mustcompletebv(t P)=0
reduce(l.P.{ <normal.p>}udependencylisi(pyomustfimshby(t.P={p})).
if p€ mustcompleteby(1.P)

to become

mustfinishbyv(1.P) =
o. ifP=OVl<l,‘,',,,
v mustcompleteby(1.P)=0
reduce(t.P,{ <normal.p>)Umustfinishby(t P—{p 1)),

if p € mustcompleteby(1,P)
Consider mustfinishby() for t2¢,,, .

Prove: In cases in which there are no dependency considerations and for which (21, ..
mustfinishby() never retums a set that includes a phase/mode pair for which the mode 1s
abor:. That is, prove that

(VPYpmp € mustfinishby(t.P)—> Mode(pmp) % abort)

Proof. This is proven by induction on i, the number of elements in P, the set of phases for
which mustfinishby() is being evaluated.

Basis. i = 0. In this case, P = ¢. Therefore, mustfinishbv(1.P) = 6. and the claim is tivially
true.

Inductive Step. Assume that the inductive hypothesis holds for all sets of phases with i or
fewer elements. Show that it also holds for all sets of phases with i+ elements.

Let P denote a set of phases with i+/ elements. According to the definition of mustfinishby()
given above:
mustfinishbv(t.P) =
o, ifP=ovi<t, .

v mustcompleteby(1.P)=6
reduce(1.P.{ <normal,p>}umustfinishby(1.P—{p})).
if p € mustcompleteby(1.P)

Itis given that 121, . and since i+/ >0, P=¢. Consequently, which of the two cases in the
above definition applies is determined solely by the value of mustcompleteby(t.P).

If mustcompleteby(t, P) = 6, then mustfinishby(t, P) = 6. 100, and once again the inductuive
hypothesis is trivially true.

Otherwise. mustcompleteby(t.P)# 6. Inthat case, let p, € mustcompleteby(1.P).

As shown in Simplification (6), mustcompleteby() is defined as:

mustcompletebyv(t P) =
o. ifres, .,
{plpe PADeadline(p)<t}, otherwise

Since p,, € mustcompleteby(1.P) and p, € ¢, then
Pmc € (Pl p€ PADeadline(p)<t]
Therefore, since all of the elements in this set are members of P . ..
P EP
This allows the value of mustfinishby(t .P) to be written as . . .
mustfinishby(1.P) = reduce(t.P.{ <normalp,_ >}omustfinishby(t.P-{p, 1))
Reduce() is defined as:

C-160 Scheduling Dependent Real-Time Activities

reduce(t.P.PMP) =

reduce(t.P PMP—{<abort p>1}), if <cabort p>.<normal p>€ PMP
A<abort p> & mustfinishbvii™.P)
PMP, otherwise

It is gven that P has i+/ elements, and 1t has been proven that p _ 1is one of them.
Consequently, P—{p,, | has i elements and the inductive hypothesis asserts that . ..

pmp € mustfinishby(t.P-{p,_ })— Mode(pmp)# abort

Also, since Mode(<normalp, >)=abort, the entire argument passed to the funcuon reducef
contains no phase/mode pairs for which the mode is abort. Therefore, the second case in the
definition of reduce(; applies. and reduce() acts as an identity function for this particular set
of arguments . ..

reduce(t.P.| <normal.p >} mustfinishbv(t.P~{p, })) =
{<normal.p >}omustfinishby(t P—{p_ })

Inserting this fact into the earlier expression for mustfinishby(1.P) yields . . .
mustfinishby(t.P) = {<normal.p >} mustfinishby(t.P-{p_.})

Assume pmp € mustfinishby(t.P). Using the definition for mustfinishby(t.P) that was just
presented . ..

pmp € {<normal.p, >} mustfinishby(t.P—-{p, })
or equivalently . ..
pmp € {<normalp, >} v pmp€ mustfinishby(t.P~{p,_ _})

As was noted earlier, the set of phases P—{p,, | has i elements. so the inductive hypothesis
holds and asserts . ..

pmp € musifinishby(t.P~(p_ })— Mode(pmp)=abort
Yet ...
pmp & mustfinishby(t.P-{p 1)
—pmp€ (<normalp, >}
- pmp=<normalp, >
— Mode(pmp) #abort
Applying the following idenuty from formal logic
(A-SBAN(—-A—->B)=B
to the last two implications leads to the conclusion . . .

Mode(pmp)#abort

The above result was denved by assuming pmp € musifimishbv(t.P). Applving another formal
logic identity:

AturnstileB=A 5B
proves . ..
pmp € mustfinishby(t,P) — Mode(pmp) # abort

Therefore, the inductive hvpothesis holds for all sets of phases P with i+/ members, whether
or not mustcompletebrv(1.P) is empty. Q.E.D.

Applying this result to the definition of mustfinishby(}, once again noting that reducer) will
always act as an identity function since

(VP pmp € mustfinishby(1.PY — Mode(pmp) £ abort)
yields ...

Scheduling Dependen: Real-Time Activities

mustfinishbv(t.P) =
0. ifP=ovi«, .
v mustcompletebyv(t P1=6
{<normal p>}omusifinishby(t P—(p}). ifp€ mustcompleteby(1.P)

Finally. a simple induction on the size of the set P will vield . ..

mustfinishby(t.P) =
0, ifP=ov 1<l yrent
v mustcompletebyv(1 P)=0
{<normalp>|pe mustcomplereby(t.P)}.
otherwise

8. In the formulation of the DASA scheduling algorithm. the function nimerequiredby() is only
evaluated with a result from mustfinishby() (ignonng the recursive evaluations that are part of
the definition of timerequiredbyv()). As a short inductuve proof would indicate, in that case
timereguiredby() can be simplified since (as shown in Simplificaton (7)) mustfinishby()
retuns no phase/mode pairs that have an aborr mode. Therefore, timerequiredby() never
receives an argument containing a phase/mode pair of the form <abort, p>, and it can be

simplified from . ..
timerequiredby(PMP) =
0. if PMP=6
ExecClock(p)+timerequiredby(PMP—{ <normal p>}),
if <normal.p>€ PMP
AboriClock(p)+timerequiredby(PMP—{<abort,p>}),
if <abort p>€ PMP
to ...
timerequiredby(PMP) =
0 if PMP=0

ExecClock(p)+timerequiredbx(PMP—{ <normal,p>}),
if <normal.p>€ PMP

9. Pickone() 1s also only evaluated for an argument that is a result retumed by evaluating
mustfinishby(). Once again, since mustfinishby() never returns a set containing an element
that is a phase/mode pair with an aborr mode, pickone() can be simplified from . ..

pickone(PMP) =

<normal.p>, if <cnormal p>€ PMP
ADep(p)=nullphase
<abort,p>, if <cabort p>€ PMP

A—(3gX<normal.g>€ PMP
ADep(q)=nuliphase)

<normal.nuliphase>, otherwise
to ...
pickone(PMP) =
<normal,p>, if <normal.p>¢€ PMP
ADep(p)=nullphase
<normal.nullphase>, otherwise

Since. according to Simplification (2), (Vp)Dep(p)=nullphase . ..

pickone(PMP) =
<normal.p>, if <normal,p>e PMP
<normal.nullphase>, otherwise

Finally, this functuon can be rewritten as . . .

C-161

C-162

10.

The Simplified Definition of the Automaton. There are also a set of simplifications that can be made to

Scheduling Dependent Real-Time Activities

pickone(PMP) =
<normal.nullphase>, if PMP=6
<normal.p>| <normal p>¢€ PMP, otherwise

As shown in Simplification (4) above . ..
PVD{p)= 0, if ExecMode(p)=abort,
Val(p)

—_— otherwi
ExecClockip) erwise

As shown in Simplification (9), pickone() will never return a phase/mode pair as a result
whose mode is abort. As a result, the precondition for accepting an 'abort-phase’ event for
the DASA automaton will never be sagsfied. Since the postconditions of "abort-phase’ are the
only way that 'ExecMode’ can be changed to "abort’ for any phase. then ...

(Vp)ExecMode(p)=normal

This allows the first case in the definiton of PVD/) to be dropped, vielding . ..

Val(p)

V. = .
PVDP) = FeClockp)

the automaton itself when there are no dependencies to consider.

discussed in tum.

1.

39

As pointed out before, all of the simplifications stem from the fact that . ..
(Vp)ResourceRequested(p)=nullresource

Consider the postconditions defined for a "request’ event:
ExecClock’(A)=ExecClock(A)y~t,~ResumeTime(A))

ResourceRequested (A)=r ; indicate A is resource-waiting
PhaseElect’=SelectPhase(PhaseList)
RunningPhase=nullphase . give up processor until ‘grant’ed resource

They necessarily include an assignment to ResourceRequested for some phase, it must be the
case that no ‘request’ event can be accepted by the simplified DASA automaton. Therefore,
the precondition for the acceptance of a 'request’ event is false, and the event can be
eliminated from the automaton.

. Similarly, consider the precondition for the acceptance of a "grant’ event:

(RunningPhase=nullphase)A(Phase(PhaseElect)=A)A(r # nullresource)
A(ResourceRequested(Phase(PhaseElect))=r)n(Mode(PhaseElecty=normal)

Since 1t includes as conjuncts (ResourceRequested(Phase(PhaseElect))=r) and
(r#nullresource), this precondition can never be sausfied because
(Vp)ResourceRequested(p)=nullresource. Therefore, this precondition will always be fulse. a
‘grant’ event can never be accepted, and the event can be eliminated from the simphfied
DASA autormaton.

. Consider the precondition for the acceptance of a ‘resume-phase” event:

(RunningPhase=nuliphase)a(Phase\PhaseElect)=A)A(Phase(PhaseElect) # nullphase)
A —ResourceWatting(Phase(PhaseElect))A(Mode(PhaseElect)=normal)

In particular, consider the conjunct — ResourceWaiting(Phase(PhaseElect)), remembering
that, by definition . . .

ResourceWaiting(p)=(3r)(ResourceRequested(p)=rar# nullresourceAOwner(r)z p)

ResourceWaiting() must be false for all phases, implying that — ResourceWaiting(p) must be
true for all phases p. Therefore, the precondition for the acceptance of a 'resume-phase’
event may be simplified to:

Each of these simplifications are

Scheduling Dependent Real-Time Activities C-163

(RunningPhase=nullphase)A(Phase(PhaseElect)=AIA(Phase(PhascElect)# nullphase)
A(Mode(PhaseElect)\=normal)

4. The postconditions associated with a ‘request-phase* event include:

.release the resources acquired during the phase
forrinResourcesHeld(A)
Owner'(r)=6
ResourcesHeld (A)=6

ResourcesHeld is initially set to 6 and is only altered by the postconditons accompanying the
acceplance of a 'grant’ event. Since it was shown in simplification 2. that there can be no
‘grant’ events, then these actions concerning ResourcesHeld in the postconditions for a
‘request-phase’ have no effect. Furthermore, Owner is initially set 1o nullphase and is only
changed as a result of the postconditions that accompany the acceptance of a "grant’ event.
Consequently. all of the postconditions listed immediately above can be eliminated from the
simplified DASA automaton without illeffect. In fact, the state components Owner,
ResourcesHeld, and ResourceRequested can all be eliminated from the automaton as well.

5. Consider the precondition for the acceptance of an 'abort-phase” event:
(RunningPhase=nullphase)n(Phase(P haseElect)=A)A(Mode(PhaseElect)=abort)

In particular, consider the conjunct (Mode(PhaseElect)=abort). PhaseElect always receives
1ts value as a result of the following evaluation:

PhaseElect’=SelectPhase(PhaseList")

and ...
SelectPhase(P) =
pickone(mus!ﬁnishby(DLﬁm(pmpIist).P:ched“,‘d({pLp2. 31,
where
pmplist =tobescheduled(P cheduled 1P1.22.931))
pickone(PMP) =
<normal.nullphase>, if PMP =6
<normal.p> | <normal.p>¢e PMP, otherwise

Under no circumstances will this return a phase/mode pair with a mode indicating abon.
Therefore, the conjunct (Mode(PhaseElect)=abort) will always be false and the entire
precondition is always false. Consequently, the enure ‘abort-phase’ portion of the DASA
automaton may be omitted in the simplified version.

R R Pk C R R SR TR CR S Tl CR S C Ol Sl R ad O b Clad O

MISSION
of

Rome Aiwr Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C*1) activities. Technical and
engineering support within areas of competence s prouvided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*I systems. The areas of
technical competence include communications, command and
control, battle management information processing. surveillance
sensors, intelligence data collection and handling, solid state
sciences. electromagnetics. and propagatior. and electronic
reliability maintainability and compatibility.

R CR PR OB CIR IR O PR OFUR ORVaR OOV R O CE ol Sl O

MECaR CRv el CAVR SV R CAN R SN R L b o ak C AR CHE S O RU R RS R Ot C et od

Ul 35 o (D ™ 5 P LK P S O LS PSS P S o A P S A A S

